Enter a problem...
Basic Math Examples
2-i3+2i2−i3+2i
Step 1
Multiply the numerator and denominator of 2-i3+2i2−i3+2i by the conjugate of 3+2i3+2i to make the denominator real.
2-i3+2i⋅3-2i3-2i2−i3+2i⋅3−2i3−2i
Step 2
Step 2.1
Combine.
(2-i)(3-2i)(3+2i)(3-2i)(2−i)(3−2i)(3+2i)(3−2i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (2-i)(3-2i)(2−i)(3−2i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
2(3-2i)-i(3-2i)(3+2i)(3-2i)2(3−2i)−i(3−2i)(3+2i)(3−2i)
Step 2.2.1.2
Apply the distributive property.
2⋅3+2(-2i)-i(3-2i)(3+2i)(3-2i)2⋅3+2(−2i)−i(3−2i)(3+2i)(3−2i)
Step 2.2.1.3
Apply the distributive property.
2⋅3+2(-2i)-i⋅3-i(-2i)(3+2i)(3-2i)2⋅3+2(−2i)−i⋅3−i(−2i)(3+2i)(3−2i)
2⋅3+2(-2i)-i⋅3-i(-2i)(3+2i)(3-2i)2⋅3+2(−2i)−i⋅3−i(−2i)(3+2i)(3−2i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 22 by 33.
6+2(-2i)-i⋅3-i(-2i)(3+2i)(3-2i)6+2(−2i)−i⋅3−i(−2i)(3+2i)(3−2i)
Step 2.2.2.1.2
Multiply -2−2 by 22.
6-4i-i⋅3-i(-2i)(3+2i)(3-2i)6−4i−i⋅3−i(−2i)(3+2i)(3−2i)
Step 2.2.2.1.3
Multiply 33 by -1−1.
6-4i-3i-i(-2i)(3+2i)(3-2i)6−4i−3i−i(−2i)(3+2i)(3−2i)
Step 2.2.2.1.4
Multiply -i(-2i)−i(−2i).
Step 2.2.2.1.4.1
Multiply -2−2 by -1−1.
6-4i-3i+2ii(3+2i)(3-2i)6−4i−3i+2ii(3+2i)(3−2i)
Step 2.2.2.1.4.2
Raise ii to the power of 11.
6-4i-3i+2(i1i)(3+2i)(3-2i)6−4i−3i+2(i1i)(3+2i)(3−2i)
Step 2.2.2.1.4.3
Raise ii to the power of 11.
6-4i-3i+2(i1i1)(3+2i)(3-2i)6−4i−3i+2(i1i1)(3+2i)(3−2i)
Step 2.2.2.1.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
6-4i-3i+2i1+1(3+2i)(3-2i)6−4i−3i+2i1+1(3+2i)(3−2i)
Step 2.2.2.1.4.5
Add 11 and 11.
6-4i-3i+2i2(3+2i)(3-2i)6−4i−3i+2i2(3+2i)(3−2i)
6-4i-3i+2i2(3+2i)(3-2i)6−4i−3i+2i2(3+2i)(3−2i)
Step 2.2.2.1.5
Rewrite i2i2 as -1−1.
6-4i-3i+2⋅-1(3+2i)(3-2i)6−4i−3i+2⋅−1(3+2i)(3−2i)
Step 2.2.2.1.6
Multiply 22 by -1−1.
6-4i-3i-2(3+2i)(3-2i)6−4i−3i−2(3+2i)(3−2i)
6-4i-3i-2(3+2i)(3-2i)6−4i−3i−2(3+2i)(3−2i)
Step 2.2.2.2
Subtract 22 from 66.
4-4i-3i(3+2i)(3-2i)4−4i−3i(3+2i)(3−2i)
Step 2.2.2.3
Subtract 3i3i from -4i−4i.
4-7i(3+2i)(3-2i)4−7i(3+2i)(3−2i)
4-7i(3+2i)(3-2i)4−7i(3+2i)(3−2i)
4-7i(3+2i)(3-2i)4−7i(3+2i)(3−2i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (3+2i)(3-2i)(3+2i)(3−2i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
4-7i3(3-2i)+2i(3-2i)4−7i3(3−2i)+2i(3−2i)
Step 2.3.1.2
Apply the distributive property.
4-7i3⋅3+3(-2i)+2i(3-2i)4−7i3⋅3+3(−2i)+2i(3−2i)
Step 2.3.1.3
Apply the distributive property.
4-7i3⋅3+3(-2i)+2i⋅3+2i(-2i)4−7i3⋅3+3(−2i)+2i⋅3+2i(−2i)
4-7i3⋅3+3(-2i)+2i⋅3+2i(-2i)4−7i3⋅3+3(−2i)+2i⋅3+2i(−2i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 33 by 33.
4-7i9+3(-2i)+2i⋅3+2i(-2i)4−7i9+3(−2i)+2i⋅3+2i(−2i)
Step 2.3.2.2
Multiply -2−2 by 33.
4-7i9-6i+2i⋅3+2i(-2i)4−7i9−6i+2i⋅3+2i(−2i)
Step 2.3.2.3
Multiply 33 by 22.
4-7i9-6i+6i+2i(-2i)4−7i9−6i+6i+2i(−2i)
Step 2.3.2.4
Multiply -2−2 by 22.
4-7i9-6i+6i-4ii4−7i9−6i+6i−4ii
Step 2.3.2.5
Raise ii to the power of 11.
4-7i9-6i+6i-4(i1i)4−7i9−6i+6i−4(i1i)
Step 2.3.2.6
Raise ii to the power of 11.
4-7i9-6i+6i-4(i1i1)4−7i9−6i+6i−4(i1i1)
Step 2.3.2.7
Use the power rule aman=am+naman=am+n to combine exponents.
4-7i9-6i+6i-4i1+14−7i9−6i+6i−4i1+1
Step 2.3.2.8
Add 11 and 11.
4-7i9-6i+6i-4i24−7i9−6i+6i−4i2
Step 2.3.2.9
Add -6i−6i and 6i6i.
4-7i9+0-4i24−7i9+0−4i2
Step 2.3.2.10
Add 99 and 00.
4-7i9-4i24−7i9−4i2
4-7i9-4i24−7i9−4i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2i2 as -1−1.
4-7i9-4⋅-14−7i9−4⋅−1
Step 2.3.3.2
Multiply -4−4 by -1−1.
4-7i9+44−7i9+4
4-7i9+44−7i9+4
Step 2.3.4
Add 99 and 44.
4-7i134−7i13
4-7i134−7i13
4-7i134−7i13
Step 3
Split the fraction 4-7i134−7i13 into two fractions.
413+-7i13413+−7i13
Step 4
Move the negative in front of the fraction.
413-7i13413−7i13