Basic Math Examples

Write in Standard Form (2-i)/(3+2i)
2-i3+2i2i3+2i
Step 1
Multiply the numerator and denominator of 2-i3+2i2i3+2i by the conjugate of 3+2i3+2i to make the denominator real.
2-i3+2i3-2i3-2i2i3+2i32i32i
Step 2
Multiply.
Tap for more steps...
Step 2.1
Combine.
(2-i)(3-2i)(3+2i)(3-2i)(2i)(32i)(3+2i)(32i)
Step 2.2
Simplify the numerator.
Tap for more steps...
Step 2.2.1
Expand (2-i)(3-2i)(2i)(32i) using the FOIL Method.
Tap for more steps...
Step 2.2.1.1
Apply the distributive property.
2(3-2i)-i(3-2i)(3+2i)(3-2i)2(32i)i(32i)(3+2i)(32i)
Step 2.2.1.2
Apply the distributive property.
23+2(-2i)-i(3-2i)(3+2i)(3-2i)23+2(2i)i(32i)(3+2i)(32i)
Step 2.2.1.3
Apply the distributive property.
23+2(-2i)-i3-i(-2i)(3+2i)(3-2i)23+2(2i)i3i(2i)(3+2i)(32i)
23+2(-2i)-i3-i(-2i)(3+2i)(3-2i)23+2(2i)i3i(2i)(3+2i)(32i)
Step 2.2.2
Simplify and combine like terms.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Multiply 22 by 33.
6+2(-2i)-i3-i(-2i)(3+2i)(3-2i)6+2(2i)i3i(2i)(3+2i)(32i)
Step 2.2.2.1.2
Multiply -22 by 22.
6-4i-i3-i(-2i)(3+2i)(3-2i)64ii3i(2i)(3+2i)(32i)
Step 2.2.2.1.3
Multiply 33 by -11.
6-4i-3i-i(-2i)(3+2i)(3-2i)64i3ii(2i)(3+2i)(32i)
Step 2.2.2.1.4
Multiply -i(-2i)i(2i).
Tap for more steps...
Step 2.2.2.1.4.1
Multiply -22 by -11.
6-4i-3i+2ii(3+2i)(3-2i)64i3i+2ii(3+2i)(32i)
Step 2.2.2.1.4.2
Raise ii to the power of 11.
6-4i-3i+2(i1i)(3+2i)(3-2i)64i3i+2(i1i)(3+2i)(32i)
Step 2.2.2.1.4.3
Raise ii to the power of 11.
6-4i-3i+2(i1i1)(3+2i)(3-2i)64i3i+2(i1i1)(3+2i)(32i)
Step 2.2.2.1.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
6-4i-3i+2i1+1(3+2i)(3-2i)64i3i+2i1+1(3+2i)(32i)
Step 2.2.2.1.4.5
Add 11 and 11.
6-4i-3i+2i2(3+2i)(3-2i)64i3i+2i2(3+2i)(32i)
6-4i-3i+2i2(3+2i)(3-2i)64i3i+2i2(3+2i)(32i)
Step 2.2.2.1.5
Rewrite i2i2 as -11.
6-4i-3i+2-1(3+2i)(3-2i)64i3i+21(3+2i)(32i)
Step 2.2.2.1.6
Multiply 22 by -11.
6-4i-3i-2(3+2i)(3-2i)64i3i2(3+2i)(32i)
6-4i-3i-2(3+2i)(3-2i)64i3i2(3+2i)(32i)
Step 2.2.2.2
Subtract 22 from 66.
4-4i-3i(3+2i)(3-2i)44i3i(3+2i)(32i)
Step 2.2.2.3
Subtract 3i3i from -4i4i.
4-7i(3+2i)(3-2i)47i(3+2i)(32i)
4-7i(3+2i)(3-2i)47i(3+2i)(32i)
4-7i(3+2i)(3-2i)47i(3+2i)(32i)
Step 2.3
Simplify the denominator.
Tap for more steps...
Step 2.3.1
Expand (3+2i)(3-2i)(3+2i)(32i) using the FOIL Method.
Tap for more steps...
Step 2.3.1.1
Apply the distributive property.
4-7i3(3-2i)+2i(3-2i)47i3(32i)+2i(32i)
Step 2.3.1.2
Apply the distributive property.
4-7i33+3(-2i)+2i(3-2i)47i33+3(2i)+2i(32i)
Step 2.3.1.3
Apply the distributive property.
4-7i33+3(-2i)+2i3+2i(-2i)47i33+3(2i)+2i3+2i(2i)
4-7i33+3(-2i)+2i3+2i(-2i)47i33+3(2i)+2i3+2i(2i)
Step 2.3.2
Simplify.
Tap for more steps...
Step 2.3.2.1
Multiply 33 by 33.
4-7i9+3(-2i)+2i3+2i(-2i)47i9+3(2i)+2i3+2i(2i)
Step 2.3.2.2
Multiply -22 by 33.
4-7i9-6i+2i3+2i(-2i)47i96i+2i3+2i(2i)
Step 2.3.2.3
Multiply 33 by 22.
4-7i9-6i+6i+2i(-2i)47i96i+6i+2i(2i)
Step 2.3.2.4
Multiply -22 by 22.
4-7i9-6i+6i-4ii47i96i+6i4ii
Step 2.3.2.5
Raise ii to the power of 11.
4-7i9-6i+6i-4(i1i)47i96i+6i4(i1i)
Step 2.3.2.6
Raise ii to the power of 11.
4-7i9-6i+6i-4(i1i1)47i96i+6i4(i1i1)
Step 2.3.2.7
Use the power rule aman=am+naman=am+n to combine exponents.
4-7i9-6i+6i-4i1+147i96i+6i4i1+1
Step 2.3.2.8
Add 11 and 11.
4-7i9-6i+6i-4i247i96i+6i4i2
Step 2.3.2.9
Add -6i6i and 6i6i.
4-7i9+0-4i247i9+04i2
Step 2.3.2.10
Add 99 and 00.
4-7i9-4i247i94i2
4-7i9-4i247i94i2
Step 2.3.3
Simplify each term.
Tap for more steps...
Step 2.3.3.1
Rewrite i2i2 as -11.
4-7i9-4-147i941
Step 2.3.3.2
Multiply -44 by -11.
4-7i9+447i9+4
4-7i9+447i9+4
Step 2.3.4
Add 99 and 44.
4-7i1347i13
4-7i1347i13
4-7i1347i13
Step 3
Split the fraction 4-7i1347i13 into two fractions.
413+-7i13413+7i13
Step 4
Move the negative in front of the fraction.
413-7i134137i13
 [x2  12  π  xdx ]  x2  12  π  xdx