Enter a problem...
Basic Math Examples
6+5i2-i6+5i2−i
Step 1
Multiply the numerator and denominator of 6+5i2-i6+5i2−i by the conjugate of 2-i2−i to make the denominator real.
6+5i2-i⋅2+i2+i6+5i2−i⋅2+i2+i
Step 2
Step 2.1
Combine.
(6+5i)(2+i)(2-i)(2+i)(6+5i)(2+i)(2−i)(2+i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (6+5i)(2+i)(6+5i)(2+i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
6(2+i)+5i(2+i)(2-i)(2+i)6(2+i)+5i(2+i)(2−i)(2+i)
Step 2.2.1.2
Apply the distributive property.
6⋅2+6i+5i(2+i)(2-i)(2+i)6⋅2+6i+5i(2+i)(2−i)(2+i)
Step 2.2.1.3
Apply the distributive property.
6⋅2+6i+5i⋅2+5ii(2-i)(2+i)6⋅2+6i+5i⋅2+5ii(2−i)(2+i)
6⋅2+6i+5i⋅2+5ii(2-i)(2+i)6⋅2+6i+5i⋅2+5ii(2−i)(2+i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 66 by 22.
12+6i+5i⋅2+5ii(2-i)(2+i)12+6i+5i⋅2+5ii(2−i)(2+i)
Step 2.2.2.1.2
Multiply 22 by 55.
12+6i+10i+5ii(2-i)(2+i)12+6i+10i+5ii(2−i)(2+i)
Step 2.2.2.1.3
Multiply 5ii5ii.
Step 2.2.2.1.3.1
Raise ii to the power of 11.
12+6i+10i+5(i1i)(2-i)(2+i)12+6i+10i+5(i1i)(2−i)(2+i)
Step 2.2.2.1.3.2
Raise ii to the power of 11.
12+6i+10i+5(i1i1)(2-i)(2+i)12+6i+10i+5(i1i1)(2−i)(2+i)
Step 2.2.2.1.3.3
Use the power rule aman=am+naman=am+n to combine exponents.
12+6i+10i+5i1+1(2-i)(2+i)12+6i+10i+5i1+1(2−i)(2+i)
Step 2.2.2.1.3.4
Add 11 and 11.
12+6i+10i+5i2(2-i)(2+i)12+6i+10i+5i2(2−i)(2+i)
12+6i+10i+5i2(2-i)(2+i)
Step 2.2.2.1.4
Rewrite i2 as -1.
12+6i+10i+5⋅-1(2-i)(2+i)
Step 2.2.2.1.5
Multiply 5 by -1.
12+6i+10i-5(2-i)(2+i)
12+6i+10i-5(2-i)(2+i)
Step 2.2.2.2
Subtract 5 from 12.
7+6i+10i(2-i)(2+i)
Step 2.2.2.3
Add 6i and 10i.
7+16i(2-i)(2+i)
7+16i(2-i)(2+i)
7+16i(2-i)(2+i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (2-i)(2+i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
7+16i2(2+i)-i(2+i)
Step 2.3.1.2
Apply the distributive property.
7+16i2⋅2+2i-i(2+i)
Step 2.3.1.3
Apply the distributive property.
7+16i2⋅2+2i-i⋅2-ii
7+16i2⋅2+2i-i⋅2-ii
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 2 by 2.
7+16i4+2i-i⋅2-ii
Step 2.3.2.2
Multiply 2 by -1.
7+16i4+2i-2i-ii
Step 2.3.2.3
Raise i to the power of 1.
7+16i4+2i-2i-(i1i)
Step 2.3.2.4
Raise i to the power of 1.
7+16i4+2i-2i-(i1i1)
Step 2.3.2.5
Use the power rule aman=am+n to combine exponents.
7+16i4+2i-2i-i1+1
Step 2.3.2.6
Add 1 and 1.
7+16i4+2i-2i-i2
Step 2.3.2.7
Subtract 2i from 2i.
7+16i4+0-i2
Step 2.3.2.8
Add 4 and 0.
7+16i4-i2
7+16i4-i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
7+16i4--1
Step 2.3.3.2
Multiply -1 by -1.
7+16i4+1
7+16i4+1
Step 2.3.4
Add 4 and 1.
7+16i5
7+16i5
7+16i5
Step 3
Split the fraction 7+16i5 into two fractions.
75+16i5