Enter a problem...
Basic Math Examples
2-3i6+4i2−3i6+4i
Step 1
Multiply the numerator and denominator of 2-3i6+4i2−3i6+4i by the conjugate of 6+4i6+4i to make the denominator real.
2-3i6+4i⋅6-4i6-4i2−3i6+4i⋅6−4i6−4i
Step 2
Step 2.1
Combine.
(2-3i)(6-4i)(6+4i)(6-4i)(2−3i)(6−4i)(6+4i)(6−4i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (2-3i)(6-4i)(2−3i)(6−4i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
2(6-4i)-3i(6-4i)(6+4i)(6-4i)2(6−4i)−3i(6−4i)(6+4i)(6−4i)
Step 2.2.1.2
Apply the distributive property.
2⋅6+2(-4i)-3i(6-4i)(6+4i)(6-4i)2⋅6+2(−4i)−3i(6−4i)(6+4i)(6−4i)
Step 2.2.1.3
Apply the distributive property.
2⋅6+2(-4i)-3i⋅6-3i(-4i)(6+4i)(6-4i)2⋅6+2(−4i)−3i⋅6−3i(−4i)(6+4i)(6−4i)
2⋅6+2(-4i)-3i⋅6-3i(-4i)(6+4i)(6-4i)2⋅6+2(−4i)−3i⋅6−3i(−4i)(6+4i)(6−4i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 22 by 66.
12+2(-4i)-3i⋅6-3i(-4i)(6+4i)(6-4i)12+2(−4i)−3i⋅6−3i(−4i)(6+4i)(6−4i)
Step 2.2.2.1.2
Multiply -4−4 by 22.
12-8i-3i⋅6-3i(-4i)(6+4i)(6-4i)12−8i−3i⋅6−3i(−4i)(6+4i)(6−4i)
Step 2.2.2.1.3
Multiply 66 by -3−3.
12-8i-18i-3i(-4i)(6+4i)(6-4i)12−8i−18i−3i(−4i)(6+4i)(6−4i)
Step 2.2.2.1.4
Multiply -3i(-4i)−3i(−4i).
Step 2.2.2.1.4.1
Multiply -4−4 by -3−3.
12-8i-18i+12ii(6+4i)(6-4i)12−8i−18i+12ii(6+4i)(6−4i)
Step 2.2.2.1.4.2
Raise ii to the power of 11.
12-8i-18i+12(i1i)(6+4i)(6-4i)12−8i−18i+12(i1i)(6+4i)(6−4i)
Step 2.2.2.1.4.3
Raise ii to the power of 11.
12-8i-18i+12(i1i1)(6+4i)(6-4i)12−8i−18i+12(i1i1)(6+4i)(6−4i)
Step 2.2.2.1.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
12-8i-18i+12i1+1(6+4i)(6-4i)12−8i−18i+12i1+1(6+4i)(6−4i)
Step 2.2.2.1.4.5
Add 11 and 11.
12-8i-18i+12i2(6+4i)(6-4i)12−8i−18i+12i2(6+4i)(6−4i)
12-8i-18i+12i2(6+4i)(6-4i)12−8i−18i+12i2(6+4i)(6−4i)
Step 2.2.2.1.5
Rewrite i2i2 as -1−1.
12-8i-18i+12⋅-1(6+4i)(6-4i)12−8i−18i+12⋅−1(6+4i)(6−4i)
Step 2.2.2.1.6
Multiply 1212 by -1−1.
12-8i-18i-12(6+4i)(6-4i)12−8i−18i−12(6+4i)(6−4i)
12-8i-18i-12(6+4i)(6-4i)12−8i−18i−12(6+4i)(6−4i)
Step 2.2.2.2
Subtract 1212 from 1212.
0-8i-18i(6+4i)(6-4i)0−8i−18i(6+4i)(6−4i)
Step 2.2.2.3
Subtract 8i8i from 00.
-8i-18i(6+4i)(6-4i)−8i−18i(6+4i)(6−4i)
Step 2.2.2.4
Subtract 18i18i from -8i−8i.
-26i(6+4i)(6-4i)−26i(6+4i)(6−4i)
-26i(6+4i)(6-4i)−26i(6+4i)(6−4i)
-26i(6+4i)(6-4i)−26i(6+4i)(6−4i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (6+4i)(6-4i)(6+4i)(6−4i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
-26i6(6-4i)+4i(6-4i)−26i6(6−4i)+4i(6−4i)
Step 2.3.1.2
Apply the distributive property.
-26i6⋅6+6(-4i)+4i(6-4i)−26i6⋅6+6(−4i)+4i(6−4i)
Step 2.3.1.3
Apply the distributive property.
-26i6⋅6+6(-4i)+4i⋅6+4i(-4i)−26i6⋅6+6(−4i)+4i⋅6+4i(−4i)
-26i6⋅6+6(-4i)+4i⋅6+4i(-4i)−26i6⋅6+6(−4i)+4i⋅6+4i(−4i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 66 by 66.
-26i36+6(-4i)+4i⋅6+4i(-4i)−26i36+6(−4i)+4i⋅6+4i(−4i)
Step 2.3.2.2
Multiply -4−4 by 66.
-26i36-24i+4i⋅6+4i(-4i)−26i36−24i+4i⋅6+4i(−4i)
Step 2.3.2.3
Multiply 66 by 44.
-26i36-24i+24i+4i(-4i)−26i36−24i+24i+4i(−4i)
Step 2.3.2.4
Multiply -4−4 by 44.
-26i36-24i+24i-16ii−26i36−24i+24i−16ii
Step 2.3.2.5
Raise ii to the power of 11.
-26i36-24i+24i-16(i1i)−26i36−24i+24i−16(i1i)
Step 2.3.2.6
Raise ii to the power of 11.
-26i36-24i+24i-16(i1i1)−26i36−24i+24i−16(i1i1)
Step 2.3.2.7
Use the power rule aman=am+naman=am+n to combine exponents.
-26i36-24i+24i-16i1+1−26i36−24i+24i−16i1+1
Step 2.3.2.8
Add 11 and 11.
-26i36-24i+24i-16i2−26i36−24i+24i−16i2
Step 2.3.2.9
Add -24i−24i and 24i24i.
-26i36+0-16i2−26i36+0−16i2
Step 2.3.2.10
Add 3636 and 00.
-26i36-16i2−26i36−16i2
-26i36-16i2−26i36−16i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2i2 as -1−1.
-26i36-16⋅-1−26i36−16⋅−1
Step 2.3.3.2
Multiply -16−16 by -1−1.
-26i36+16−26i36+16
-26i36+16−26i36+16
Step 2.3.4
Add 3636 and 1616.
-26i52−26i52
-26i52−26i52
-26i52−26i52
Step 3
Step 3.1
Factor 2626 out of -26i−26i.
26(-i)5226(−i)52
Step 3.2
Cancel the common factors.
Step 3.2.1
Factor 2626 out of 5252.
26(-i)26(2)26(−i)26(2)
Step 3.2.2
Cancel the common factor.
26(-i)26⋅2
Step 3.2.3
Rewrite the expression.
-i2
-i2
-i2
Step 4
Move the negative in front of the fraction.
-i2