Basic Math Examples

Find the Derivative - d/dx 5x^2(4+x)
5x2(4+x)5x2(4+x)
Step 1
Since 55 is constant with respect to xx, the derivative of 5x2(4+x)5x2(4+x) with respect to xx is 5ddx[x2(4+x)]5ddx[x2(4+x)].
5ddx[x2(4+x)]5ddx[x2(4+x)]
Step 2
Differentiate using the Product Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x2f(x)=x2 and g(x)=4+xg(x)=4+x.
5(x2ddx[4+x]+(4+x)ddx[x2])5(x2ddx[4+x]+(4+x)ddx[x2])
Step 3
Differentiate.
Tap for more steps...
Step 3.1
By the Sum Rule, the derivative of 4+x4+x with respect to xx is ddx[4]+ddx[x]ddx[4]+ddx[x].
5(x2(ddx[4]+ddx[x])+(4+x)ddx[x2])5(x2(ddx[4]+ddx[x])+(4+x)ddx[x2])
Step 3.2
Since 44 is constant with respect to xx, the derivative of 44 with respect to xx is 00.
5(x2(0+ddx[x])+(4+x)ddx[x2])5(x2(0+ddx[x])+(4+x)ddx[x2])
Step 3.3
Add 00 and ddx[x]ddx[x].
5(x2ddx[x]+(4+x)ddx[x2])5(x2ddx[x]+(4+x)ddx[x2])
Step 3.4
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=1n=1.
5(x21+(4+x)ddx[x2])5(x21+(4+x)ddx[x2])
Step 3.5
Multiply x2x2 by 11.
5(x2+(4+x)ddx[x2])5(x2+(4+x)ddx[x2])
Step 3.6
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=2n=2.
5(x2+(4+x)(2x))5(x2+(4+x)(2x))
Step 3.7
Move 22 to the left of 4+x4+x.
5(x2+2(4+x)x)5(x2+2(4+x)x)
5(x2+2(4+x)x)5(x2+2(4+x)x)
Step 4
Simplify.
Tap for more steps...
Step 4.1
Apply the distributive property.
5(x2+(24+2x)x)5(x2+(24+2x)x)
Step 4.2
Apply the distributive property.
5(x2+24x+2xx)5(x2+24x+2xx)
Step 4.3
Apply the distributive property.
5x2+5(24x)+5(2xx)5x2+5(24x)+5(2xx)
Step 4.4
Combine terms.
Tap for more steps...
Step 4.4.1
Multiply 22 by 44.
5x2+5(8x)+5(2xx)5x2+5(8x)+5(2xx)
Step 4.4.2
Multiply 88 by 55.
5x2+40x+5(2xx)5x2+40x+5(2xx)
Step 4.4.3
Raise xx to the power of 11.
5x2+40x+5(2(x1x))5x2+40x+5(2(x1x))
Step 4.4.4
Raise xx to the power of 11.
5x2+40x+5(2(x1x1))5x2+40x+5(2(x1x1))
Step 4.4.5
Use the power rule aman=am+naman=am+n to combine exponents.
5x2+40x+5(2x1+1)5x2+40x+5(2x1+1)
Step 4.4.6
Add 11 and 11.
5x2+40x+5(2x2)5x2+40x+5(2x2)
Step 4.4.7
Multiply 22 by 55.
5x2+40x+10x25x2+40x+10x2
Step 4.4.8
Add 5x25x2 and 10x210x2.
15x2+40x15x2+40x
15x2+40x15x2+40x
15x2+40x15x2+40x
 [x2  12  π  xdx ]  x2  12  π  xdx