Enter a problem...
Basic Math Examples
2y+65y2-95y-15
Step 1
Multiply the numerator by the reciprocal of the denominator.
(2y+6)y2-95y-155
Step 2
Step 2.1
Subtract 9 from 2.
(2y+6)y-75y-155
Step 2.2
Rewrite the expression using the negative exponent rule b-n=1bn.
(2y+6)1y75y-155
(2y+6)1y75y-155
Step 3
Step 3.1
Factor 5 out of 5y.
(2y+6)1y75(y)-155
Step 3.2
Factor 5 out of -15.
(2y+6)1y75y+5⋅-35
Step 3.3
Factor 5 out of 5y+5⋅-3.
(2y+6)1y75(y-3)5
(2y+6)1y75(y-3)5
Step 4
Step 4.1
Multiply the numerator by the reciprocal of the denominator.
(2y+6)1y7⋅15(y-3)5
Step 4.2
Combine.
(2y+6)1⋅1y7(5(y-3))5
Step 4.3
Multiply 1 by 1.
(2y+6)1y7(5(y-3))5
Step 4.4
Move 5 to the left of y7.
(2y+6)15y7(y-3)5
(2y+6)15y7(y-3)5
Step 5
Multiply the numerator by the reciprocal of the denominator.
(2y+6)(15y7(y-3)⋅15)
Step 6
Combine.
(2y+6)1⋅15y7(y-3)⋅5
Step 7
Multiply 1 by 1.
(2y+6)15y7(y-3)⋅5
Step 8
Multiply 5 by 5.
(2y+6)125y7(y-3)
Step 9
Multiply 2y+6 by 125y7(y-3).
2y+625y7(y-3)
Step 10
Step 10.1
Factor 2 out of 2y.
2(y)+625y7(y-3)
Step 10.2
Factor 2 out of 6.
2y+2⋅325y7(y-3)
Step 10.3
Factor 2 out of 2y+2⋅3.
2(y+3)25y7(y-3)
2(y+3)25y7(y-3)
Step 11
Apply the distributive property.
2y+2⋅325y7(y-3)
Step 12
Multiply 2 by 3.
2y+625y7(y-3)
Step 13
Split the fraction 2y+625y7(y-3) into two fractions.
2y25y7(y-3)+625y7(y-3)
Step 14
Step 14.1
Factor y out of 2y.
y⋅225y7(y-3)+625y7(y-3)
Step 14.2
Cancel the common factors.
Step 14.2.1
Factor y out of 25y7(y-3).
y⋅2y(25y6(y-3))+625y7(y-3)
Step 14.2.2
Cancel the common factor.
y⋅2y(25y6(y-3))+625y7(y-3)
Step 14.2.3
Rewrite the expression.
225y6(y-3)+625y7(y-3)
225y6(y-3)+625y7(y-3)
225y6(y-3)+625y7(y-3)