Basic Math Examples

Divide (2y+6)/(5/((y^(2-9))/(5y-15)))
2y+65y2-95y-15
Step 1
Multiply the numerator by the reciprocal of the denominator.
(2y+6)y2-95y-155
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Subtract 9 from 2.
(2y+6)y-75y-155
Step 2.2
Rewrite the expression using the negative exponent rule b-n=1bn.
(2y+6)1y75y-155
(2y+6)1y75y-155
Step 3
Factor 5 out of 5y-15.
Tap for more steps...
Step 3.1
Factor 5 out of 5y.
(2y+6)1y75(y)-155
Step 3.2
Factor 5 out of -15.
(2y+6)1y75y+5-35
Step 3.3
Factor 5 out of 5y+5-3.
(2y+6)1y75(y-3)5
(2y+6)1y75(y-3)5
Step 4
Simplify the numerator.
Tap for more steps...
Step 4.1
Multiply the numerator by the reciprocal of the denominator.
(2y+6)1y715(y-3)5
Step 4.2
Combine.
(2y+6)11y7(5(y-3))5
Step 4.3
Multiply 1 by 1.
(2y+6)1y7(5(y-3))5
Step 4.4
Move 5 to the left of y7.
(2y+6)15y7(y-3)5
(2y+6)15y7(y-3)5
Step 5
Multiply the numerator by the reciprocal of the denominator.
(2y+6)(15y7(y-3)15)
Step 6
Combine.
(2y+6)115y7(y-3)5
Step 7
Multiply 1 by 1.
(2y+6)15y7(y-3)5
Step 8
Multiply 5 by 5.
(2y+6)125y7(y-3)
Step 9
Multiply 2y+6 by 125y7(y-3).
2y+625y7(y-3)
Step 10
Factor 2 out of 2y+6.
Tap for more steps...
Step 10.1
Factor 2 out of 2y.
2(y)+625y7(y-3)
Step 10.2
Factor 2 out of 6.
2y+2325y7(y-3)
Step 10.3
Factor 2 out of 2y+23.
2(y+3)25y7(y-3)
2(y+3)25y7(y-3)
Step 11
Apply the distributive property.
2y+2325y7(y-3)
Step 12
Multiply 2 by 3.
2y+625y7(y-3)
Step 13
Split the fraction 2y+625y7(y-3) into two fractions.
2y25y7(y-3)+625y7(y-3)
Step 14
Cancel the common factor of y and y7.
Tap for more steps...
Step 14.1
Factor y out of 2y.
y225y7(y-3)+625y7(y-3)
Step 14.2
Cancel the common factors.
Tap for more steps...
Step 14.2.1
Factor y out of 25y7(y-3).
y2y(25y6(y-3))+625y7(y-3)
Step 14.2.2
Cancel the common factor.
y2y(25y6(y-3))+625y7(y-3)
Step 14.2.3
Rewrite the expression.
225y6(y-3)+625y7(y-3)
225y6(y-3)+625y7(y-3)
225y6(y-3)+625y7(y-3)
 [x2  12  π  xdx ]