Enter a problem...
Basic Math Examples
1+i2-i
Step 1
Multiply the numerator and denominator of 1+i2-i by the conjugate of 2-i to make the denominator real.
1+i2-i⋅2+i2+i
Step 2
Step 2.1
Combine.
(1+i)(2+i)(2-i)(2+i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (1+i)(2+i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
1(2+i)+i(2+i)(2-i)(2+i)
Step 2.2.1.2
Apply the distributive property.
1⋅2+1i+i(2+i)(2-i)(2+i)
Step 2.2.1.3
Apply the distributive property.
1⋅2+1i+i⋅2+ii(2-i)(2+i)
1⋅2+1i+i⋅2+ii(2-i)(2+i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 2 by 1.
2+1i+i⋅2+ii(2-i)(2+i)
Step 2.2.2.1.2
Multiply i by 1.
2+i+i⋅2+ii(2-i)(2+i)
Step 2.2.2.1.3
Move 2 to the left of i.
2+i+2⋅i+ii(2-i)(2+i)
Step 2.2.2.1.4
Multiply ii.
Step 2.2.2.1.4.1
Raise i to the power of 1.
2+i+2i+i1i(2-i)(2+i)
Step 2.2.2.1.4.2
Raise i to the power of 1.
2+i+2i+i1i1(2-i)(2+i)
Step 2.2.2.1.4.3
Use the power rule aman=am+n to combine exponents.
2+i+2i+i1+1(2-i)(2+i)
Step 2.2.2.1.4.4
Add 1 and 1.
2+i+2i+i2(2-i)(2+i)
2+i+2i+i2(2-i)(2+i)
Step 2.2.2.1.5
Rewrite i2 as -1.
2+i+2i-1(2-i)(2+i)
2+i+2i-1(2-i)(2+i)
Step 2.2.2.2
Subtract 1 from 2.
1+i+2i(2-i)(2+i)
Step 2.2.2.3
Add i and 2i.
1+3i(2-i)(2+i)
1+3i(2-i)(2+i)
1+3i(2-i)(2+i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (2-i)(2+i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
1+3i2(2+i)-i(2+i)
Step 2.3.1.2
Apply the distributive property.
1+3i2⋅2+2i-i(2+i)
Step 2.3.1.3
Apply the distributive property.
1+3i2⋅2+2i-i⋅2-ii
1+3i2⋅2+2i-i⋅2-ii
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 2 by 2.
1+3i4+2i-i⋅2-ii
Step 2.3.2.2
Multiply 2 by -1.
1+3i4+2i-2i-ii
Step 2.3.2.3
Raise i to the power of 1.
1+3i4+2i-2i-(i1i)
Step 2.3.2.4
Raise i to the power of 1.
1+3i4+2i-2i-(i1i1)
Step 2.3.2.5
Use the power rule aman=am+n to combine exponents.
1+3i4+2i-2i-i1+1
Step 2.3.2.6
Add 1 and 1.
1+3i4+2i-2i-i2
Step 2.3.2.7
Subtract 2i from 2i.
1+3i4+0-i2
Step 2.3.2.8
Add 4 and 0.
1+3i4-i2
1+3i4-i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
1+3i4--1
Step 2.3.3.2
Multiply -1 by -1.
1+3i4+1
1+3i4+1
Step 2.3.4
Add 4 and 1.
1+3i5
1+3i5
1+3i5
Step 3
Split the fraction 1+3i5 into two fractions.
15+3i5