Enter a problem...
Basic Math Examples
1+6i5i
Step 1
Multiply the numerator and denominator of 1+6i5i by the conjugate of 5i to make the denominator real.
1+6i5i⋅ii
Step 2
Step 2.1
Combine.
(1+6i)i5ii
Step 2.2
Simplify the numerator.
Step 2.2.1
Apply the distributive property.
1i+6ii5ii
Step 2.2.2
Multiply i by 1.
i+6ii5ii
Step 2.2.3
Multiply 6ii.
Step 2.2.3.1
Raise i to the power of 1.
i+6(i1i)5ii
Step 2.2.3.2
Raise i to the power of 1.
i+6(i1i1)5ii
Step 2.2.3.3
Use the power rule aman=am+n to combine exponents.
i+6i1+15ii
Step 2.2.3.4
Add 1 and 1.
i+6i25ii
i+6i25ii
Step 2.2.4
Simplify each term.
Step 2.2.4.1
Rewrite i2 as -1.
i+6⋅-15ii
Step 2.2.4.2
Multiply 6 by -1.
i-65ii
i-65ii
Step 2.2.5
Reorder i and -6.
-6+i5ii
-6+i5ii
Step 2.3
Simplify the denominator.
Step 2.3.1
Add parentheses.
-6+i5(ii)
Step 2.3.2
Raise i to the power of 1.
-6+i5(i1i)
Step 2.3.3
Raise i to the power of 1.
-6+i5(i1i1)
Step 2.3.4
Use the power rule aman=am+n to combine exponents.
-6+i5i1+1
Step 2.3.5
Add 1 and 1.
-6+i5i2
Step 2.3.6
Rewrite i2 as -1.
-6+i5⋅-1
-6+i5⋅-1
-6+i5⋅-1
Step 3
Multiply 5 by -1.
-6+i-5
Step 4
Split the fraction -6+i-5 into two fractions.
-6-5+i-5
Step 5
Step 5.1
Dividing two negative values results in a positive value.
65+i-5
Step 5.2
Move the negative in front of the fraction.
65-i5
65-i5