Enter a problem...
Basic Math Examples
6+3i-8-4i6+3i−8−4i
Step 1
Multiply the numerator and denominator of 6+3i-8-4i6+3i−8−4i by the conjugate of -8-4i−8−4i to make the denominator real.
6+3i-8-4i⋅-8+4i-8+4i6+3i−8−4i⋅−8+4i−8+4i
Step 2
Step 2.1
Combine.
(6+3i)(-8+4i)(-8-4i)(-8+4i)(6+3i)(−8+4i)(−8−4i)(−8+4i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (6+3i)(-8+4i)(6+3i)(−8+4i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
6(-8+4i)+3i(-8+4i)(-8-4i)(-8+4i)6(−8+4i)+3i(−8+4i)(−8−4i)(−8+4i)
Step 2.2.1.2
Apply the distributive property.
6⋅-8+6(4i)+3i(-8+4i)(-8-4i)(-8+4i)6⋅−8+6(4i)+3i(−8+4i)(−8−4i)(−8+4i)
Step 2.2.1.3
Apply the distributive property.
6⋅-8+6(4i)+3i⋅-8+3i(4i)(-8-4i)(-8+4i)6⋅−8+6(4i)+3i⋅−8+3i(4i)(−8−4i)(−8+4i)
6⋅-8+6(4i)+3i⋅-8+3i(4i)(-8-4i)(-8+4i)6⋅−8+6(4i)+3i⋅−8+3i(4i)(−8−4i)(−8+4i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 66 by -8−8.
-48+6(4i)+3i⋅-8+3i(4i)(-8-4i)(-8+4i)−48+6(4i)+3i⋅−8+3i(4i)(−8−4i)(−8+4i)
Step 2.2.2.1.2
Multiply 44 by 66.
-48+24i+3i⋅-8+3i(4i)(-8-4i)(-8+4i)−48+24i+3i⋅−8+3i(4i)(−8−4i)(−8+4i)
Step 2.2.2.1.3
Multiply -8−8 by 33.
-48+24i-24i+3i(4i)(-8-4i)(-8+4i)−48+24i−24i+3i(4i)(−8−4i)(−8+4i)
Step 2.2.2.1.4
Multiply 3i(4i)3i(4i).
Step 2.2.2.1.4.1
Multiply 44 by 33.
-48+24i-24i+12ii(-8-4i)(-8+4i)−48+24i−24i+12ii(−8−4i)(−8+4i)
Step 2.2.2.1.4.2
Raise ii to the power of 11.
-48+24i-24i+12(i1i)(-8-4i)(-8+4i)−48+24i−24i+12(i1i)(−8−4i)(−8+4i)
Step 2.2.2.1.4.3
Raise ii to the power of 11.
-48+24i-24i+12(i1i1)(-8-4i)(-8+4i)−48+24i−24i+12(i1i1)(−8−4i)(−8+4i)
Step 2.2.2.1.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
-48+24i-24i+12i1+1(-8-4i)(-8+4i)−48+24i−24i+12i1+1(−8−4i)(−8+4i)
Step 2.2.2.1.4.5
Add 11 and 11.
-48+24i-24i+12i2(-8-4i)(-8+4i)−48+24i−24i+12i2(−8−4i)(−8+4i)
-48+24i-24i+12i2(-8-4i)(-8+4i)−48+24i−24i+12i2(−8−4i)(−8+4i)
Step 2.2.2.1.5
Rewrite i2i2 as -1−1.
-48+24i-24i+12⋅-1(-8-4i)(-8+4i)−48+24i−24i+12⋅−1(−8−4i)(−8+4i)
Step 2.2.2.1.6
Multiply 1212 by -1−1.
-48+24i-24i-12(-8-4i)(-8+4i)−48+24i−24i−12(−8−4i)(−8+4i)
-48+24i-24i-12(-8-4i)(-8+4i)−48+24i−24i−12(−8−4i)(−8+4i)
Step 2.2.2.2
Subtract 1212 from -48−48.
-60+24i-24i(-8-4i)(-8+4i)−60+24i−24i(−8−4i)(−8+4i)
Step 2.2.2.3
Subtract 24i24i from 24i24i.
-60+0(-8-4i)(-8+4i)−60+0(−8−4i)(−8+4i)
Step 2.2.2.4
Add -60−60 and 00.
-60(-8-4i)(-8+4i)−60(−8−4i)(−8+4i)
-60(-8-4i)(-8+4i)−60(−8−4i)(−8+4i)
-60(-8-4i)(-8+4i)−60(−8−4i)(−8+4i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (-8-4i)(-8+4i)(−8−4i)(−8+4i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
-60-8(-8+4i)-4i(-8+4i)−60−8(−8+4i)−4i(−8+4i)
Step 2.3.1.2
Apply the distributive property.
-60-8⋅-8-8(4i)-4i(-8+4i)
Step 2.3.1.3
Apply the distributive property.
-60-8⋅-8-8(4i)-4i⋅-8-4i(4i)
-60-8⋅-8-8(4i)-4i⋅-8-4i(4i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply -8 by -8.
-6064-8(4i)-4i⋅-8-4i(4i)
Step 2.3.2.2
Multiply 4 by -8.
-6064-32i-4i⋅-8-4i(4i)
Step 2.3.2.3
Multiply -8 by -4.
-6064-32i+32i-4i(4i)
Step 2.3.2.4
Multiply 4 by -4.
-6064-32i+32i-16ii
Step 2.3.2.5
Raise i to the power of 1.
-6064-32i+32i-16(i1i)
Step 2.3.2.6
Raise i to the power of 1.
-6064-32i+32i-16(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
-6064-32i+32i-16i1+1
Step 2.3.2.8
Add 1 and 1.
-6064-32i+32i-16i2
Step 2.3.2.9
Add -32i and 32i.
-6064+0-16i2
Step 2.3.2.10
Add 64 and 0.
-6064-16i2
-6064-16i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
-6064-16⋅-1
Step 2.3.3.2
Multiply -16 by -1.
-6064+16
-6064+16
Step 2.3.4
Add 64 and 16.
-6080
-6080
-6080
Step 3
Step 3.1
Factor 20 out of -60.
20(-3)80
Step 3.2
Cancel the common factors.
Step 3.2.1
Factor 20 out of 80.
20⋅-320⋅4
Step 3.2.2
Cancel the common factor.
20⋅-320⋅4
Step 3.2.3
Rewrite the expression.
-34
-34
-34
Step 4
Move the negative in front of the fraction.
-34
Step 5
The result can be shown in multiple forms.
Exact Form:
-34
Decimal Form:
-0.75