Basic Math Examples

Write in Standard Form (6+3i)/(-8-4i)
6+3i-8-4i6+3i84i
Step 1
Multiply the numerator and denominator of 6+3i-8-4i6+3i84i by the conjugate of -8-4i84i to make the denominator real.
6+3i-8-4i-8+4i-8+4i6+3i84i8+4i8+4i
Step 2
Multiply.
Tap for more steps...
Step 2.1
Combine.
(6+3i)(-8+4i)(-8-4i)(-8+4i)(6+3i)(8+4i)(84i)(8+4i)
Step 2.2
Simplify the numerator.
Tap for more steps...
Step 2.2.1
Expand (6+3i)(-8+4i)(6+3i)(8+4i) using the FOIL Method.
Tap for more steps...
Step 2.2.1.1
Apply the distributive property.
6(-8+4i)+3i(-8+4i)(-8-4i)(-8+4i)6(8+4i)+3i(8+4i)(84i)(8+4i)
Step 2.2.1.2
Apply the distributive property.
6-8+6(4i)+3i(-8+4i)(-8-4i)(-8+4i)68+6(4i)+3i(8+4i)(84i)(8+4i)
Step 2.2.1.3
Apply the distributive property.
6-8+6(4i)+3i-8+3i(4i)(-8-4i)(-8+4i)68+6(4i)+3i8+3i(4i)(84i)(8+4i)
6-8+6(4i)+3i-8+3i(4i)(-8-4i)(-8+4i)68+6(4i)+3i8+3i(4i)(84i)(8+4i)
Step 2.2.2
Simplify and combine like terms.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Multiply 66 by -88.
-48+6(4i)+3i-8+3i(4i)(-8-4i)(-8+4i)48+6(4i)+3i8+3i(4i)(84i)(8+4i)
Step 2.2.2.1.2
Multiply 44 by 66.
-48+24i+3i-8+3i(4i)(-8-4i)(-8+4i)48+24i+3i8+3i(4i)(84i)(8+4i)
Step 2.2.2.1.3
Multiply -88 by 33.
-48+24i-24i+3i(4i)(-8-4i)(-8+4i)48+24i24i+3i(4i)(84i)(8+4i)
Step 2.2.2.1.4
Multiply 3i(4i)3i(4i).
Tap for more steps...
Step 2.2.2.1.4.1
Multiply 44 by 33.
-48+24i-24i+12ii(-8-4i)(-8+4i)48+24i24i+12ii(84i)(8+4i)
Step 2.2.2.1.4.2
Raise ii to the power of 11.
-48+24i-24i+12(i1i)(-8-4i)(-8+4i)48+24i24i+12(i1i)(84i)(8+4i)
Step 2.2.2.1.4.3
Raise ii to the power of 11.
-48+24i-24i+12(i1i1)(-8-4i)(-8+4i)48+24i24i+12(i1i1)(84i)(8+4i)
Step 2.2.2.1.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
-48+24i-24i+12i1+1(-8-4i)(-8+4i)48+24i24i+12i1+1(84i)(8+4i)
Step 2.2.2.1.4.5
Add 11 and 11.
-48+24i-24i+12i2(-8-4i)(-8+4i)48+24i24i+12i2(84i)(8+4i)
-48+24i-24i+12i2(-8-4i)(-8+4i)48+24i24i+12i2(84i)(8+4i)
Step 2.2.2.1.5
Rewrite i2i2 as -11.
-48+24i-24i+12-1(-8-4i)(-8+4i)48+24i24i+121(84i)(8+4i)
Step 2.2.2.1.6
Multiply 1212 by -11.
-48+24i-24i-12(-8-4i)(-8+4i)48+24i24i12(84i)(8+4i)
-48+24i-24i-12(-8-4i)(-8+4i)48+24i24i12(84i)(8+4i)
Step 2.2.2.2
Subtract 1212 from -4848.
-60+24i-24i(-8-4i)(-8+4i)60+24i24i(84i)(8+4i)
Step 2.2.2.3
Subtract 24i24i from 24i24i.
-60+0(-8-4i)(-8+4i)60+0(84i)(8+4i)
Step 2.2.2.4
Add -6060 and 00.
-60(-8-4i)(-8+4i)60(84i)(8+4i)
-60(-8-4i)(-8+4i)60(84i)(8+4i)
-60(-8-4i)(-8+4i)60(84i)(8+4i)
Step 2.3
Simplify the denominator.
Tap for more steps...
Step 2.3.1
Expand (-8-4i)(-8+4i)(84i)(8+4i) using the FOIL Method.
Tap for more steps...
Step 2.3.1.1
Apply the distributive property.
-60-8(-8+4i)-4i(-8+4i)608(8+4i)4i(8+4i)
Step 2.3.1.2
Apply the distributive property.
-60-8-8-8(4i)-4i(-8+4i)
Step 2.3.1.3
Apply the distributive property.
-60-8-8-8(4i)-4i-8-4i(4i)
-60-8-8-8(4i)-4i-8-4i(4i)
Step 2.3.2
Simplify.
Tap for more steps...
Step 2.3.2.1
Multiply -8 by -8.
-6064-8(4i)-4i-8-4i(4i)
Step 2.3.2.2
Multiply 4 by -8.
-6064-32i-4i-8-4i(4i)
Step 2.3.2.3
Multiply -8 by -4.
-6064-32i+32i-4i(4i)
Step 2.3.2.4
Multiply 4 by -4.
-6064-32i+32i-16ii
Step 2.3.2.5
Raise i to the power of 1.
-6064-32i+32i-16(i1i)
Step 2.3.2.6
Raise i to the power of 1.
-6064-32i+32i-16(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
-6064-32i+32i-16i1+1
Step 2.3.2.8
Add 1 and 1.
-6064-32i+32i-16i2
Step 2.3.2.9
Add -32i and 32i.
-6064+0-16i2
Step 2.3.2.10
Add 64 and 0.
-6064-16i2
-6064-16i2
Step 2.3.3
Simplify each term.
Tap for more steps...
Step 2.3.3.1
Rewrite i2 as -1.
-6064-16-1
Step 2.3.3.2
Multiply -16 by -1.
-6064+16
-6064+16
Step 2.3.4
Add 64 and 16.
-6080
-6080
-6080
Step 3
Cancel the common factor of -60 and 80.
Tap for more steps...
Step 3.1
Factor 20 out of -60.
20(-3)80
Step 3.2
Cancel the common factors.
Tap for more steps...
Step 3.2.1
Factor 20 out of 80.
20-3204
Step 3.2.2
Cancel the common factor.
20-3204
Step 3.2.3
Rewrite the expression.
-34
-34
-34
Step 4
Move the negative in front of the fraction.
-34
Step 5
The result can be shown in multiple forms.
Exact Form:
-34
Decimal Form:
-0.75
 [x2  12  π  xdx ]