Basic Math Examples

Write in Standard Form (4-7i)/(3+4i)
4-7i3+4i47i3+4i
Step 1
Multiply the numerator and denominator of 4-7i3+4i47i3+4i by the conjugate of 3+4i3+4i to make the denominator real.
4-7i3+4i3-4i3-4i47i3+4i34i34i
Step 2
Multiply.
Tap for more steps...
Step 2.1
Combine.
(4-7i)(3-4i)(3+4i)(3-4i)(47i)(34i)(3+4i)(34i)
Step 2.2
Simplify the numerator.
Tap for more steps...
Step 2.2.1
Expand (4-7i)(3-4i)(47i)(34i) using the FOIL Method.
Tap for more steps...
Step 2.2.1.1
Apply the distributive property.
4(3-4i)-7i(3-4i)(3+4i)(3-4i)4(34i)7i(34i)(3+4i)(34i)
Step 2.2.1.2
Apply the distributive property.
43+4(-4i)-7i(3-4i)(3+4i)(3-4i)43+4(4i)7i(34i)(3+4i)(34i)
Step 2.2.1.3
Apply the distributive property.
43+4(-4i)-7i3-7i(-4i)(3+4i)(3-4i)43+4(4i)7i37i(4i)(3+4i)(34i)
43+4(-4i)-7i3-7i(-4i)(3+4i)(3-4i)43+4(4i)7i37i(4i)(3+4i)(34i)
Step 2.2.2
Simplify and combine like terms.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Multiply 44 by 33.
12+4(-4i)-7i3-7i(-4i)(3+4i)(3-4i)12+4(4i)7i37i(4i)(3+4i)(34i)
Step 2.2.2.1.2
Multiply -44 by 44.
12-16i-7i3-7i(-4i)(3+4i)(3-4i)1216i7i37i(4i)(3+4i)(34i)
Step 2.2.2.1.3
Multiply 33 by -77.
12-16i-21i-7i(-4i)(3+4i)(3-4i)1216i21i7i(4i)(3+4i)(34i)
Step 2.2.2.1.4
Multiply -7i(-4i)7i(4i).
Tap for more steps...
Step 2.2.2.1.4.1
Multiply -44 by -77.
12-16i-21i+28ii(3+4i)(3-4i)1216i21i+28ii(3+4i)(34i)
Step 2.2.2.1.4.2
Raise i to the power of 1.
12-16i-21i+28(i1i)(3+4i)(3-4i)
Step 2.2.2.1.4.3
Raise i to the power of 1.
12-16i-21i+28(i1i1)(3+4i)(3-4i)
Step 2.2.2.1.4.4
Use the power rule aman=am+n to combine exponents.
12-16i-21i+28i1+1(3+4i)(3-4i)
Step 2.2.2.1.4.5
Add 1 and 1.
12-16i-21i+28i2(3+4i)(3-4i)
12-16i-21i+28i2(3+4i)(3-4i)
Step 2.2.2.1.5
Rewrite i2 as -1.
12-16i-21i+28-1(3+4i)(3-4i)
Step 2.2.2.1.6
Multiply 28 by -1.
12-16i-21i-28(3+4i)(3-4i)
12-16i-21i-28(3+4i)(3-4i)
Step 2.2.2.2
Subtract 28 from 12.
-16-16i-21i(3+4i)(3-4i)
Step 2.2.2.3
Subtract 21i from -16i.
-16-37i(3+4i)(3-4i)
-16-37i(3+4i)(3-4i)
-16-37i(3+4i)(3-4i)
Step 2.3
Simplify the denominator.
Tap for more steps...
Step 2.3.1
Expand (3+4i)(3-4i) using the FOIL Method.
Tap for more steps...
Step 2.3.1.1
Apply the distributive property.
-16-37i3(3-4i)+4i(3-4i)
Step 2.3.1.2
Apply the distributive property.
-16-37i33+3(-4i)+4i(3-4i)
Step 2.3.1.3
Apply the distributive property.
-16-37i33+3(-4i)+4i3+4i(-4i)
-16-37i33+3(-4i)+4i3+4i(-4i)
Step 2.3.2
Simplify.
Tap for more steps...
Step 2.3.2.1
Multiply 3 by 3.
-16-37i9+3(-4i)+4i3+4i(-4i)
Step 2.3.2.2
Multiply -4 by 3.
-16-37i9-12i+4i3+4i(-4i)
Step 2.3.2.3
Multiply 3 by 4.
-16-37i9-12i+12i+4i(-4i)
Step 2.3.2.4
Multiply -4 by 4.
-16-37i9-12i+12i-16ii
Step 2.3.2.5
Raise i to the power of 1.
-16-37i9-12i+12i-16(i1i)
Step 2.3.2.6
Raise i to the power of 1.
-16-37i9-12i+12i-16(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
-16-37i9-12i+12i-16i1+1
Step 2.3.2.8
Add 1 and 1.
-16-37i9-12i+12i-16i2
Step 2.3.2.9
Add -12i and 12i.
-16-37i9+0-16i2
Step 2.3.2.10
Add 9 and 0.
-16-37i9-16i2
-16-37i9-16i2
Step 2.3.3
Simplify each term.
Tap for more steps...
Step 2.3.3.1
Rewrite i2 as -1.
-16-37i9-16-1
Step 2.3.3.2
Multiply -16 by -1.
-16-37i9+16
-16-37i9+16
Step 2.3.4
Add 9 and 16.
-16-37i25
-16-37i25
-16-37i25
Step 3
Split the fraction -16-37i25 into two fractions.
-1625+-37i25
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Move the negative in front of the fraction.
-1625+-37i25
Step 4.2
Move the negative in front of the fraction.
-1625-37i25
-1625-37i25
(
(
)
)
|
|
[
[
]
]
π
π
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
!
!
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]