Enter a problem...
Basic Math Examples
4-7i3+4i4−7i3+4i
Step 1
Multiply the numerator and denominator of 4-7i3+4i4−7i3+4i by the conjugate of 3+4i3+4i to make the denominator real.
4-7i3+4i⋅3-4i3-4i4−7i3+4i⋅3−4i3−4i
Step 2
Step 2.1
Combine.
(4-7i)(3-4i)(3+4i)(3-4i)(4−7i)(3−4i)(3+4i)(3−4i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (4-7i)(3-4i)(4−7i)(3−4i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
4(3-4i)-7i(3-4i)(3+4i)(3-4i)4(3−4i)−7i(3−4i)(3+4i)(3−4i)
Step 2.2.1.2
Apply the distributive property.
4⋅3+4(-4i)-7i(3-4i)(3+4i)(3-4i)4⋅3+4(−4i)−7i(3−4i)(3+4i)(3−4i)
Step 2.2.1.3
Apply the distributive property.
4⋅3+4(-4i)-7i⋅3-7i(-4i)(3+4i)(3-4i)4⋅3+4(−4i)−7i⋅3−7i(−4i)(3+4i)(3−4i)
4⋅3+4(-4i)-7i⋅3-7i(-4i)(3+4i)(3-4i)4⋅3+4(−4i)−7i⋅3−7i(−4i)(3+4i)(3−4i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 44 by 33.
12+4(-4i)-7i⋅3-7i(-4i)(3+4i)(3-4i)12+4(−4i)−7i⋅3−7i(−4i)(3+4i)(3−4i)
Step 2.2.2.1.2
Multiply -4−4 by 44.
12-16i-7i⋅3-7i(-4i)(3+4i)(3-4i)12−16i−7i⋅3−7i(−4i)(3+4i)(3−4i)
Step 2.2.2.1.3
Multiply 33 by -7−7.
12-16i-21i-7i(-4i)(3+4i)(3-4i)12−16i−21i−7i(−4i)(3+4i)(3−4i)
Step 2.2.2.1.4
Multiply -7i(-4i)−7i(−4i).
Step 2.2.2.1.4.1
Multiply -4−4 by -7−7.
12-16i-21i+28ii(3+4i)(3-4i)12−16i−21i+28ii(3+4i)(3−4i)
Step 2.2.2.1.4.2
Raise i to the power of 1.
12-16i-21i+28(i1i)(3+4i)(3-4i)
Step 2.2.2.1.4.3
Raise i to the power of 1.
12-16i-21i+28(i1i1)(3+4i)(3-4i)
Step 2.2.2.1.4.4
Use the power rule aman=am+n to combine exponents.
12-16i-21i+28i1+1(3+4i)(3-4i)
Step 2.2.2.1.4.5
Add 1 and 1.
12-16i-21i+28i2(3+4i)(3-4i)
12-16i-21i+28i2(3+4i)(3-4i)
Step 2.2.2.1.5
Rewrite i2 as -1.
12-16i-21i+28⋅-1(3+4i)(3-4i)
Step 2.2.2.1.6
Multiply 28 by -1.
12-16i-21i-28(3+4i)(3-4i)
12-16i-21i-28(3+4i)(3-4i)
Step 2.2.2.2
Subtract 28 from 12.
-16-16i-21i(3+4i)(3-4i)
Step 2.2.2.3
Subtract 21i from -16i.
-16-37i(3+4i)(3-4i)
-16-37i(3+4i)(3-4i)
-16-37i(3+4i)(3-4i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (3+4i)(3-4i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
-16-37i3(3-4i)+4i(3-4i)
Step 2.3.1.2
Apply the distributive property.
-16-37i3⋅3+3(-4i)+4i(3-4i)
Step 2.3.1.3
Apply the distributive property.
-16-37i3⋅3+3(-4i)+4i⋅3+4i(-4i)
-16-37i3⋅3+3(-4i)+4i⋅3+4i(-4i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 3 by 3.
-16-37i9+3(-4i)+4i⋅3+4i(-4i)
Step 2.3.2.2
Multiply -4 by 3.
-16-37i9-12i+4i⋅3+4i(-4i)
Step 2.3.2.3
Multiply 3 by 4.
-16-37i9-12i+12i+4i(-4i)
Step 2.3.2.4
Multiply -4 by 4.
-16-37i9-12i+12i-16ii
Step 2.3.2.5
Raise i to the power of 1.
-16-37i9-12i+12i-16(i1i)
Step 2.3.2.6
Raise i to the power of 1.
-16-37i9-12i+12i-16(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
-16-37i9-12i+12i-16i1+1
Step 2.3.2.8
Add 1 and 1.
-16-37i9-12i+12i-16i2
Step 2.3.2.9
Add -12i and 12i.
-16-37i9+0-16i2
Step 2.3.2.10
Add 9 and 0.
-16-37i9-16i2
-16-37i9-16i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
-16-37i9-16⋅-1
Step 2.3.3.2
Multiply -16 by -1.
-16-37i9+16
-16-37i9+16
Step 2.3.4
Add 9 and 16.
-16-37i25
-16-37i25
-16-37i25
Step 3
Split the fraction -16-37i25 into two fractions.
-1625+-37i25
Step 4
Step 4.1
Move the negative in front of the fraction.
-1625+-37i25
Step 4.2
Move the negative in front of the fraction.
-1625-37i25
-1625-37i25