Enter a problem...
Basic Math Examples
-2+2i3-8i−2+2i3−8i
Step 1
Multiply the numerator and denominator of -2+2i3-8i−2+2i3−8i by the conjugate of 3-8i3−8i to make the denominator real.
-2+2i3-8i⋅3+8i3+8i−2+2i3−8i⋅3+8i3+8i
Step 2
Step 2.1
Combine.
(-2+2i)(3+8i)(3-8i)(3+8i)(−2+2i)(3+8i)(3−8i)(3+8i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (-2+2i)(3+8i)(−2+2i)(3+8i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
-2(3+8i)+2i(3+8i)(3-8i)(3+8i)−2(3+8i)+2i(3+8i)(3−8i)(3+8i)
Step 2.2.1.2
Apply the distributive property.
-2⋅3-2(8i)+2i(3+8i)(3-8i)(3+8i)−2⋅3−2(8i)+2i(3+8i)(3−8i)(3+8i)
Step 2.2.1.3
Apply the distributive property.
-2⋅3-2(8i)+2i⋅3+2i(8i)(3-8i)(3+8i)−2⋅3−2(8i)+2i⋅3+2i(8i)(3−8i)(3+8i)
-2⋅3-2(8i)+2i⋅3+2i(8i)(3-8i)(3+8i)−2⋅3−2(8i)+2i⋅3+2i(8i)(3−8i)(3+8i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply -2−2 by 33.
-6-2(8i)+2i⋅3+2i(8i)(3-8i)(3+8i)−6−2(8i)+2i⋅3+2i(8i)(3−8i)(3+8i)
Step 2.2.2.1.2
Multiply 88 by -2−2.
-6-16i+2i⋅3+2i(8i)(3-8i)(3+8i)−6−16i+2i⋅3+2i(8i)(3−8i)(3+8i)
Step 2.2.2.1.3
Multiply 33 by 22.
-6-16i+6i+2i(8i)(3-8i)(3+8i)−6−16i+6i+2i(8i)(3−8i)(3+8i)
Step 2.2.2.1.4
Multiply 2i(8i)2i(8i).
Step 2.2.2.1.4.1
Multiply 88 by 22.
-6-16i+6i+16ii(3-8i)(3+8i)−6−16i+6i+16ii(3−8i)(3+8i)
Step 2.2.2.1.4.2
Raise ii to the power of 11.
-6-16i+6i+16(i1i)(3-8i)(3+8i)−6−16i+6i+16(i1i)(3−8i)(3+8i)
Step 2.2.2.1.4.3
Raise ii to the power of 11.
-6-16i+6i+16(i1i1)(3-8i)(3+8i)−6−16i+6i+16(i1i1)(3−8i)(3+8i)
Step 2.2.2.1.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
-6-16i+6i+16i1+1(3-8i)(3+8i)−6−16i+6i+16i1+1(3−8i)(3+8i)
Step 2.2.2.1.4.5
Add 11 and 11.
-6-16i+6i+16i2(3-8i)(3+8i)−6−16i+6i+16i2(3−8i)(3+8i)
-6-16i+6i+16i2(3-8i)(3+8i)−6−16i+6i+16i2(3−8i)(3+8i)
Step 2.2.2.1.5
Rewrite i2i2 as -1−1.
-6-16i+6i+16⋅-1(3-8i)(3+8i)−6−16i+6i+16⋅−1(3−8i)(3+8i)
Step 2.2.2.1.6
Multiply 1616 by -1−1.
-6-16i+6i-16(3-8i)(3+8i)
-6-16i+6i-16(3-8i)(3+8i)
Step 2.2.2.2
Subtract 16 from -6.
-22-16i+6i(3-8i)(3+8i)
Step 2.2.2.3
Add -16i and 6i.
-22-10i(3-8i)(3+8i)
-22-10i(3-8i)(3+8i)
-22-10i(3-8i)(3+8i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (3-8i)(3+8i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
-22-10i3(3+8i)-8i(3+8i)
Step 2.3.1.2
Apply the distributive property.
-22-10i3⋅3+3(8i)-8i(3+8i)
Step 2.3.1.3
Apply the distributive property.
-22-10i3⋅3+3(8i)-8i⋅3-8i(8i)
-22-10i3⋅3+3(8i)-8i⋅3-8i(8i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 3 by 3.
-22-10i9+3(8i)-8i⋅3-8i(8i)
Step 2.3.2.2
Multiply 8 by 3.
-22-10i9+24i-8i⋅3-8i(8i)
Step 2.3.2.3
Multiply 3 by -8.
-22-10i9+24i-24i-8i(8i)
Step 2.3.2.4
Multiply 8 by -8.
-22-10i9+24i-24i-64ii
Step 2.3.2.5
Raise i to the power of 1.
-22-10i9+24i-24i-64(i1i)
Step 2.3.2.6
Raise i to the power of 1.
-22-10i9+24i-24i-64(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
-22-10i9+24i-24i-64i1+1
Step 2.3.2.8
Add 1 and 1.
-22-10i9+24i-24i-64i2
Step 2.3.2.9
Subtract 24i from 24i.
-22-10i9+0-64i2
Step 2.3.2.10
Add 9 and 0.
-22-10i9-64i2
-22-10i9-64i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
-22-10i9-64⋅-1
Step 2.3.3.2
Multiply -64 by -1.
-22-10i9+64
-22-10i9+64
Step 2.3.4
Add 9 and 64.
-22-10i73
-22-10i73
-22-10i73
Step 3
Split the fraction -22-10i73 into two fractions.
-2273+-10i73
Step 4
Step 4.1
Move the negative in front of the fraction.
-2273+-10i73
Step 4.2
Move the negative in front of the fraction.
-2273-10i73
-2273-10i73