Enter a problem...
Basic Math Examples
(79-23)÷(-156)(79−23)÷(−156)
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
(79-23)÷(-(1+56))(79−23)÷(−(1+56))
Step 1.2
Add 11 and 5656.
Step 1.2.1
Write 11 as a fraction with a common denominator.
(79-23)÷(-(66+56))(79−23)÷(−(66+56))
Step 1.2.2
Combine the numerators over the common denominator.
(79-23)÷(-6+56)(79−23)÷(−6+56)
Step 1.2.3
Add 66 and 55.
(79-23)÷(-116)(79−23)÷(−116)
(79-23)÷(-116)(79−23)÷(−116)
(79-23)÷(-116)(79−23)÷(−116)
Step 2
To divide by a fraction, multiply by its reciprocal.
(79-23)(-611)(79−23)(−611)
Step 3
To write -23−23 as a fraction with a common denominator, multiply by 3333.
(79-23⋅33)(-611)(79−23⋅33)(−611)
Step 4
Step 4.1
Multiply 2323 by 3333.
(79-2⋅33⋅3)(-611)(79−2⋅33⋅3)(−611)
Step 4.2
Multiply 33 by 33.
(79-2⋅39)(-611)(79−2⋅39)(−611)
(79-2⋅39)(-611)(79−2⋅39)(−611)
Step 5
Combine the numerators over the common denominator.
7-2⋅39(-611)7−2⋅39(−611)
Step 6
Step 6.1
Multiply -2−2 by 33.
7-69(-611)7−69(−611)
Step 6.2
Subtract 66 from 77.
19(-611)19(−611)
19(-611)19(−611)
Step 7
Step 7.1
Move the leading negative in -611−611 into the numerator.
19⋅-61119⋅−611
Step 7.2
Factor 33 out of 99.
13(3)⋅-61113(3)⋅−611
Step 7.3
Factor 33 out of -6−6.
13⋅3⋅3⋅-21113⋅3⋅3⋅−211
Step 7.4
Cancel the common factor.
13⋅3⋅3⋅-211
Step 7.5
Rewrite the expression.
13⋅-211
13⋅-211
Step 8
Multiply 13 by -211.
-23⋅11
Step 9
Step 9.1
Multiply 3 by 11.
-233
Step 9.2
Move the negative in front of the fraction.
-233
-233