Enter a problem...
Basic Math Examples
8+6i-3+i8+6i−3+i
Step 1
Multiply the numerator and denominator of 8+6i-3+1i8+6i−3+1i by the conjugate of -3+1i−3+1i to make the denominator real.
8+6i-3+1i⋅-3-i-3-i8+6i−3+1i⋅−3−i−3−i
Step 2
Step 2.1
Combine.
(8+6i)(-3-i)(-3+1i)(-3-i)(8+6i)(−3−i)(−3+1i)(−3−i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (8+6i)(-3-i)(8+6i)(−3−i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
8(-3-i)+6i(-3-i)(-3+1i)(-3-i)8(−3−i)+6i(−3−i)(−3+1i)(−3−i)
Step 2.2.1.2
Apply the distributive property.
8⋅-3+8(-i)+6i(-3-i)(-3+1i)(-3-i)8⋅−3+8(−i)+6i(−3−i)(−3+1i)(−3−i)
Step 2.2.1.3
Apply the distributive property.
8⋅-3+8(-i)+6i⋅-3+6i(-i)(-3+1i)(-3-i)8⋅−3+8(−i)+6i⋅−3+6i(−i)(−3+1i)(−3−i)
8⋅-3+8(-i)+6i⋅-3+6i(-i)(-3+1i)(-3-i)8⋅−3+8(−i)+6i⋅−3+6i(−i)(−3+1i)(−3−i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 88 by -3−3.
-24+8(-i)+6i⋅-3+6i(-i)(-3+1i)(-3-i)−24+8(−i)+6i⋅−3+6i(−i)(−3+1i)(−3−i)
Step 2.2.2.1.2
Multiply -1−1 by 88.
-24-8i+6i⋅-3+6i(-i)(-3+1i)(-3-i)−24−8i+6i⋅−3+6i(−i)(−3+1i)(−3−i)
Step 2.2.2.1.3
Multiply -3−3 by 66.
-24-8i-18i+6i(-i)(-3+1i)(-3-i)−24−8i−18i+6i(−i)(−3+1i)(−3−i)
Step 2.2.2.1.4
Multiply 6i(-i)6i(−i).
Step 2.2.2.1.4.1
Multiply -1−1 by 66.
-24-8i-18i-6ii(-3+1i)(-3-i)−24−8i−18i−6ii(−3+1i)(−3−i)
Step 2.2.2.1.4.2
Raise ii to the power of 1.
-24-8i-18i-6(i1i)(-3+1i)(-3-i)
Step 2.2.2.1.4.3
Raise i to the power of 1.
-24-8i-18i-6(i1i1)(-3+1i)(-3-i)
Step 2.2.2.1.4.4
Use the power rule aman=am+n to combine exponents.
-24-8i-18i-6i1+1(-3+1i)(-3-i)
Step 2.2.2.1.4.5
Add 1 and 1.
-24-8i-18i-6i2(-3+1i)(-3-i)
-24-8i-18i-6i2(-3+1i)(-3-i)
Step 2.2.2.1.5
Rewrite i2 as -1.
-24-8i-18i-6⋅-1(-3+1i)(-3-i)
Step 2.2.2.1.6
Multiply -6 by -1.
-24-8i-18i+6(-3+1i)(-3-i)
-24-8i-18i+6(-3+1i)(-3-i)
Step 2.2.2.2
Add -24 and 6.
-18-8i-18i(-3+1i)(-3-i)
Step 2.2.2.3
Subtract 18i from -8i.
-18-26i(-3+1i)(-3-i)
-18-26i(-3+1i)(-3-i)
-18-26i(-3+1i)(-3-i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (-3+1i)(-3-i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
-18-26i-3(-3-i)+1i(-3-i)
Step 2.3.1.2
Apply the distributive property.
-18-26i-3⋅-3-3(-i)+1i(-3-i)
Step 2.3.1.3
Apply the distributive property.
-18-26i-3⋅-3-3(-i)+1i⋅-3+1i(-i)
-18-26i-3⋅-3-3(-i)+1i⋅-3+1i(-i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply -3 by -3.
-18-26i9-3(-i)+1i⋅-3+1i(-i)
Step 2.3.2.2
Multiply -1 by -3.
-18-26i9+3i+1i⋅-3+1i(-i)
Step 2.3.2.3
Multiply -3 by 1.
-18-26i9+3i-3i+1i(-i)
Step 2.3.2.4
Multiply -1 by 1.
-18-26i9+3i-3i-ii
Step 2.3.2.5
Raise i to the power of 1.
-18-26i9+3i-3i-(i1i)
Step 2.3.2.6
Raise i to the power of 1.
-18-26i9+3i-3i-(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
-18-26i9+3i-3i-i1+1
Step 2.3.2.8
Add 1 and 1.
-18-26i9+3i-3i-i2
Step 2.3.2.9
Subtract 3i from 3i.
-18-26i9+0-i2
Step 2.3.2.10
Add 9 and 0.
-18-26i9-i2
-18-26i9-i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
-18-26i9--1
Step 2.3.3.2
Multiply -1 by -1.
-18-26i9+1
-18-26i9+1
Step 2.3.4
Add 9 and 1.
-18-26i10
-18-26i10
-18-26i10
Step 3
Step 3.1
Factor 2 out of -18.
2(-9)-26i10
Step 3.2
Factor 2 out of -26i.
2(-9)+2(-13i)10
Step 3.3
Factor 2 out of 2(-9)+2(-13i).
2(-9-13i)10
Step 3.4
Cancel the common factors.
Step 3.4.1
Factor 2 out of 10.
2(-9-13i)2⋅5
Step 3.4.2
Cancel the common factor.
2(-9-13i)2⋅5
Step 3.4.3
Rewrite the expression.
-9-13i5
-9-13i5
-9-13i5
Step 4
Split the fraction -9-13i5 into two fractions.
-95+-13i5
Step 5
Step 5.1
Move the negative in front of the fraction.
-95+-13i5
Step 5.2
Move the negative in front of the fraction.
-95-13i5
-95-13i5