Enter a problem...
Basic Math Examples
y100y4-642y100y4−642
Step 1
Rewrite y100y4y100y4 as (y50y2)2(y50y2)2.
(y50y2)2-642(y50y2)2−642
Step 2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=y50y2a=y50y2 and b=64b=64.
(y50y2+64)(y50y2-64)(y50y2+64)(y50y2−64)
Step 3
Step 3.1
Multiply y50y50 by y2y2 by adding the exponents.
Step 3.1.1
Use the power rule aman=am+naman=am+n to combine exponents.
(y50+2+64)(y50y2-64)(y50+2+64)(y50y2−64)
Step 3.1.2
Add 5050 and 22.
(y52+64)(y50y2-64)(y52+64)(y50y2−64)
(y52+64)(y50y2-64)(y52+64)(y50y2−64)
Step 3.2
Rewrite y50y2y50y2 as (y25y)2(y25y)2.
(y52+64)((y25y)2-64)(y52+64)((y25y)2−64)
Step 3.3
Rewrite 6464 as 8282.
(y52+64)((y25y)2-82)(y52+64)((y25y)2−82)
Step 3.4
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=y25ya=y25y and b=8b=8.
(y52+64)((y25y+8)(y25y-8))(y52+64)((y25y+8)(y25y−8))
Step 3.5
Factor.
Step 3.5.1
Simplify.
Step 3.5.1.1
Multiply y25y25 by yy by adding the exponents.
Step 3.5.1.1.1
Multiply y25y25 by yy.
Step 3.5.1.1.1.1
Raise yy to the power of 11.
(y52+64)((y25y1+8)(y25y-8))(y52+64)((y25y1+8)(y25y−8))
Step 3.5.1.1.1.2
Use the power rule aman=am+n to combine exponents.
(y52+64)((y25+1+8)(y25y-8))
(y52+64)((y25+1+8)(y25y-8))
Step 3.5.1.1.2
Add 25 and 1.
(y52+64)((y26+8)(y25y-8))
(y52+64)((y26+8)(y25y-8))
Step 3.5.1.2
Multiply y25 by y by adding the exponents.
Step 3.5.1.2.1
Multiply y25 by y.
Step 3.5.1.2.1.1
Raise y to the power of 1.
(y52+64)((y26+8)(y25y1-8))
Step 3.5.1.2.1.2
Use the power rule aman=am+n to combine exponents.
(y52+64)((y26+8)(y25+1-8))
(y52+64)((y26+8)(y25+1-8))
Step 3.5.1.2.2
Add 25 and 1.
(y52+64)((y26+8)(y26-8))
(y52+64)((y26+8)(y26-8))
(y52+64)((y26+8)(y26-8))
Step 3.5.2
Remove unnecessary parentheses.
(y52+64)(y26+8)(y26-8)
(y52+64)(y26+8)(y26-8)
(y52+64)(y26+8)(y26-8)