Enter a problem...
Basic Math Examples
√y5-y2+√81y3-81√y5−y2+√81y3−81
Step 1
Step 1.1
Factor y2 out of y5.
√y2y3-y2+√81y3-81
Step 1.2
Factor y2 out of -y2.
√y2y3+y2⋅-1+√81y3-81
Step 1.3
Factor y2 out of y2y3+y2⋅-1.
√y2(y3-1)+√81y3-81
√y2(y3-1)+√81y3-81
Step 2
Rewrite 1 as 13.
√y2(y3-13)+√81y3-81
Step 3
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=y and b=1.
√y2((y-1)(y2+y⋅1+12))+√81y3-81
Step 4
Step 4.1
Simplify.
Step 4.1.1
Multiply y by 1.
√y2((y-1)(y2+y+12))+√81y3-81
Step 4.1.2
One to any power is one.
√y2((y-1)(y2+y+1))+√81y3-81
√y2((y-1)(y2+y+1))+√81y3-81
Step 4.2
Remove unnecessary parentheses.
√y2(y-1)(y2+y+1)+√81y3-81
√y2(y-1)(y2+y+1)+√81y3-81
Step 5
Step 5.1
Rewrite 1 as 12.
√y2(y-1)(y2+y+12)+√81y3-81
Step 5.2
Add parentheses.
√y2((y-1)(y2+y+12))+√81y3-81
√y2((y-1)(y2+y+12))+√81y3-81
Step 6
Pull terms out from under the radical.
y√(y-1)(y2+y+12)+√81y3-81
Step 7
One to any power is one.
y√(y-1)(y2+y+1)+√81y3-81
Step 8
Step 8.1
Factor 81 out of 81y3.
y√(y-1)(y2+y+1)+√81(y3)-81
Step 8.2
Factor 81 out of -81.
y√(y-1)(y2+y+1)+√81(y3)+81(-1)
Step 8.3
Factor 81 out of 81(y3)+81(-1).
y√(y-1)(y2+y+1)+√81(y3-1)
y√(y-1)(y2+y+1)+√81(y3-1)
Step 9
Rewrite 1 as 13.
y√(y-1)(y2+y+1)+√81(y3-13)
Step 10
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=y and b=1.
y√(y-1)(y2+y+1)+√81((y-1)(y2+y⋅1+12))
Step 11
Step 11.1
Simplify.
Step 11.1.1
Multiply y by 1.
y√(y-1)(y2+y+1)+√81((y-1)(y2+y+12))
Step 11.1.2
One to any power is one.
y√(y-1)(y2+y+1)+√81((y-1)(y2+y+1))
y√(y-1)(y2+y+1)+√81((y-1)(y2+y+1))
Step 11.2
Remove unnecessary parentheses.
y√(y-1)(y2+y+1)+√81(y-1)(y2+y+1)
y√(y-1)(y2+y+1)+√81(y-1)(y2+y+1)
Step 12
Step 12.1
Rewrite 81 as 92.
y√(y-1)(y2+y+1)+√92(y-1)(y2+y+1)
Step 12.2
Rewrite 9 as 32.
y√(y-1)(y2+y+1)+√(32)2(y-1)(y2+y+1)
Step 12.3
Add parentheses.
y√(y-1)(y2+y+1)+√(32)2((y-1)(y2+y+1))
y√(y-1)(y2+y+1)+√(32)2((y-1)(y2+y+1))
Step 13
Pull terms out from under the radical.
y√(y-1)(y2+y+1)+32√(y-1)(y2+y+1)
Step 14
Raise 3 to the power of 2.
y√(y-1)(y2+y+1)+9√(y-1)(y2+y+1)
Step 15
Step 15.1
Factor √(y-1)(y2+y+1) out of y√(y-1)(y2+y+1).
√(y-1)(y2+y+1)y+9√(y-1)(y2+y+1)
Step 15.2
Factor √(y-1)(y2+y+1) out of 9√(y-1)(y2+y+1).
√(y-1)(y2+y+1)y+√(y-1)(y2+y+1)⋅9
Step 15.3
Factor √(y-1)(y2+y+1) out of √(y-1)(y2+y+1)y+√(y-1)(y2+y+1)⋅9.
√(y-1)(y2+y+1)(y+9)
√(y-1)(y2+y+1)(y+9)