Basic Math Examples

Factor square root of y^5-y^2+ square root of 81y^3-81
y5-y2+81y3-81y5y2+81y381
Step 1
Factor y2 out of y5-y2.
Tap for more steps...
Step 1.1
Factor y2 out of y5.
y2y3-y2+81y3-81
Step 1.2
Factor y2 out of -y2.
y2y3+y2-1+81y3-81
Step 1.3
Factor y2 out of y2y3+y2-1.
y2(y3-1)+81y3-81
y2(y3-1)+81y3-81
Step 2
Rewrite 1 as 13.
y2(y3-13)+81y3-81
Step 3
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=y and b=1.
y2((y-1)(y2+y1+12))+81y3-81
Step 4
Factor.
Tap for more steps...
Step 4.1
Simplify.
Tap for more steps...
Step 4.1.1
Multiply y by 1.
y2((y-1)(y2+y+12))+81y3-81
Step 4.1.2
One to any power is one.
y2((y-1)(y2+y+1))+81y3-81
y2((y-1)(y2+y+1))+81y3-81
Step 4.2
Remove unnecessary parentheses.
y2(y-1)(y2+y+1)+81y3-81
y2(y-1)(y2+y+1)+81y3-81
Step 5
Rewrite y2(y-1)(y2+y+1) as y2((y-1)(y2+y+12)).
Tap for more steps...
Step 5.1
Rewrite 1 as 12.
y2(y-1)(y2+y+12)+81y3-81
Step 5.2
Add parentheses.
y2((y-1)(y2+y+12))+81y3-81
y2((y-1)(y2+y+12))+81y3-81
Step 6
Pull terms out from under the radical.
y(y-1)(y2+y+12)+81y3-81
Step 7
One to any power is one.
y(y-1)(y2+y+1)+81y3-81
Step 8
Factor 81 out of 81y3-81.
Tap for more steps...
Step 8.1
Factor 81 out of 81y3.
y(y-1)(y2+y+1)+81(y3)-81
Step 8.2
Factor 81 out of -81.
y(y-1)(y2+y+1)+81(y3)+81(-1)
Step 8.3
Factor 81 out of 81(y3)+81(-1).
y(y-1)(y2+y+1)+81(y3-1)
y(y-1)(y2+y+1)+81(y3-1)
Step 9
Rewrite 1 as 13.
y(y-1)(y2+y+1)+81(y3-13)
Step 10
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=y and b=1.
y(y-1)(y2+y+1)+81((y-1)(y2+y1+12))
Step 11
Factor.
Tap for more steps...
Step 11.1
Simplify.
Tap for more steps...
Step 11.1.1
Multiply y by 1.
y(y-1)(y2+y+1)+81((y-1)(y2+y+12))
Step 11.1.2
One to any power is one.
y(y-1)(y2+y+1)+81((y-1)(y2+y+1))
y(y-1)(y2+y+1)+81((y-1)(y2+y+1))
Step 11.2
Remove unnecessary parentheses.
y(y-1)(y2+y+1)+81(y-1)(y2+y+1)
y(y-1)(y2+y+1)+81(y-1)(y2+y+1)
Step 12
Rewrite 81(y-1)(y2+y+1) as (32)2((y-1)(y2+y+1)).
Tap for more steps...
Step 12.1
Rewrite 81 as 92.
y(y-1)(y2+y+1)+92(y-1)(y2+y+1)
Step 12.2
Rewrite 9 as 32.
y(y-1)(y2+y+1)+(32)2(y-1)(y2+y+1)
Step 12.3
Add parentheses.
y(y-1)(y2+y+1)+(32)2((y-1)(y2+y+1))
y(y-1)(y2+y+1)+(32)2((y-1)(y2+y+1))
Step 13
Pull terms out from under the radical.
y(y-1)(y2+y+1)+32(y-1)(y2+y+1)
Step 14
Raise 3 to the power of 2.
y(y-1)(y2+y+1)+9(y-1)(y2+y+1)
Step 15
Factor (y-1)(y2+y+1) out of y(y-1)(y2+y+1)+9(y-1)(y2+y+1).
Tap for more steps...
Step 15.1
Factor (y-1)(y2+y+1) out of y(y-1)(y2+y+1).
(y-1)(y2+y+1)y+9(y-1)(y2+y+1)
Step 15.2
Factor (y-1)(y2+y+1) out of 9(y-1)(y2+y+1).
(y-1)(y2+y+1)y+(y-1)(y2+y+1)9
Step 15.3
Factor (y-1)(y2+y+1) out of (y-1)(y2+y+1)y+(y-1)(y2+y+1)9.
(y-1)(y2+y+1)(y+9)
(y-1)(y2+y+1)(y+9)
 [x2  12  π  xdx ]