Enter a problem...
Basic Math Examples
a2-d2+n2-c2-2an-2cda2−d2+n2−c2−2an−2cd
Step 1
Regroup terms.
a2+n2-2an-d2-c2-2cda2+n2−2an−d2−c2−2cd
Step 2
Step 2.1
Rearrange terms.
a2-2an+n2-d2-c2-2cda2−2an+n2−d2−c2−2cd
Step 2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
2an=2⋅a⋅n2an=2⋅a⋅n
Step 2.3
Rewrite the polynomial.
a2-2⋅a⋅n+n2-d2-c2-2cda2−2⋅a⋅n+n2−d2−c2−2cd
Step 2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2a2−2ab+b2=(a−b)2, where a=aa=a and b=nb=n.
(a-n)2-d2-c2-2cd(a−n)2−d2−c2−2cd
(a-n)2-d2-c2-2cd(a−n)2−d2−c2−2cd
Step 3
Step 3.1
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=-1⋅-1=1a⋅c=−1⋅−1=1 and whose sum is b=-2b=−2.
Step 3.1.1
Reorder terms.
(a-n)2-c2-d2-2cd(a−n)2−c2−d2−2cd
Step 3.1.2
Reorder -d2−d2 and -2cd−2cd.
(a-n)2-c2-2cd-d2(a−n)2−c2−2cd−d2
Step 3.1.3
Factor -2−2 out of -2cd−2cd.
(a-n)2-c2-2(cd)-d2(a−n)2−c2−2(cd)−d2
Step 3.1.4
Rewrite -2−2 as -1−1 plus -1−1
(a-n)2-c2+(-1-1)(cd)-d2(a−n)2−c2+(−1−1)(cd)−d2
Step 3.1.5
Apply the distributive property.
(a-n)2-c2-1(cd)-1(cd)-d2(a−n)2−c2−1(cd)−1(cd)−d2
Step 3.1.6
Remove unnecessary parentheses.
(a-n)2-c2-1cd-1(cd)-d2(a−n)2−c2−1cd−1(cd)−d2
Step 3.1.7
Remove unnecessary parentheses.
(a-n)2-c2-1cd-1cd-d2(a−n)2−c2−1cd−1cd−d2
(a-n)2-c2-1cd-1cd-d2(a−n)2−c2−1cd−1cd−d2
Step 3.2
Factor out the greatest common factor from each group.
Step 3.2.1
Group the first two terms and the last two terms.
(a-n)2+(-c2-1cd)-1cd-d2(a−n)2+(−c2−1cd)−1cd−d2
Step 3.2.2
Factor out the greatest common factor (GCF) from each group.
(a-n)2+c(-c-1d)+d(-1c-d)
(a-n)2+c(-c-1d)+d(-1c-d)
Step 3.3
Factor the polynomial by factoring out the greatest common factor, -c-1d.
(a-n)2+(-c-1d)(c+d)
(a-n)2+(-c-1d)(c+d)
Step 4
Rewrite -1d as -d.
(a-n)2+(-c-d)(c+d)
Step 5
Rewrite (c+d)(c+d) as (c+d)2.
(a-n)2-(c+d)2
Step 6
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=a-n and b=c+d.
(a-n+c+d)(a-n-(c+d))
Step 7
Apply the distributive property.
(a-n+c+d)(a-n-c-d)