Basic Math Examples

Factor a^2-d^2+n^2-c^2-2an-2cd
a2-d2+n2-c2-2an-2cda2d2+n2c22an2cd
Step 1
Regroup terms.
a2+n2-2an-d2-c2-2cda2+n22and2c22cd
Step 2
Factor using the perfect square rule.
Tap for more steps...
Step 2.1
Rearrange terms.
a2-2an+n2-d2-c2-2cda22an+n2d2c22cd
Step 2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
2an=2an2an=2an
Step 2.3
Rewrite the polynomial.
a2-2an+n2-d2-c2-2cda22an+n2d2c22cd
Step 2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2a22ab+b2=(ab)2, where a=aa=a and b=nb=n.
(a-n)2-d2-c2-2cd(an)2d2c22cd
(a-n)2-d2-c2-2cd(an)2d2c22cd
Step 3
Factor by grouping.
Tap for more steps...
Step 3.1
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is ac=-1-1=1ac=11=1 and whose sum is b=-2b=2.
Tap for more steps...
Step 3.1.1
Reorder terms.
(a-n)2-c2-d2-2cd(an)2c2d22cd
Step 3.1.2
Reorder -d2d2 and -2cd2cd.
(a-n)2-c2-2cd-d2(an)2c22cdd2
Step 3.1.3
Factor -22 out of -2cd2cd.
(a-n)2-c2-2(cd)-d2(an)2c22(cd)d2
Step 3.1.4
Rewrite -22 as -11 plus -11
(a-n)2-c2+(-1-1)(cd)-d2(an)2c2+(11)(cd)d2
Step 3.1.5
Apply the distributive property.
(a-n)2-c2-1(cd)-1(cd)-d2(an)2c21(cd)1(cd)d2
Step 3.1.6
Remove unnecessary parentheses.
(a-n)2-c2-1cd-1(cd)-d2(an)2c21cd1(cd)d2
Step 3.1.7
Remove unnecessary parentheses.
(a-n)2-c2-1cd-1cd-d2(an)2c21cd1cdd2
(a-n)2-c2-1cd-1cd-d2(an)2c21cd1cdd2
Step 3.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 3.2.1
Group the first two terms and the last two terms.
(a-n)2+(-c2-1cd)-1cd-d2(an)2+(c21cd)1cdd2
Step 3.2.2
Factor out the greatest common factor (GCF) from each group.
(a-n)2+c(-c-1d)+d(-1c-d)
(a-n)2+c(-c-1d)+d(-1c-d)
Step 3.3
Factor the polynomial by factoring out the greatest common factor, -c-1d.
(a-n)2+(-c-1d)(c+d)
(a-n)2+(-c-1d)(c+d)
Step 4
Rewrite -1d as -d.
(a-n)2+(-c-d)(c+d)
Step 5
Rewrite (c+d)(c+d) as (c+d)2.
(a-n)2-(c+d)2
Step 6
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=a-n and b=c+d.
(a-n+c+d)(a-n-(c+d))
Step 7
Apply the distributive property.
(a-n+c+d)(a-n-c-d)
 [x2  12  π  xdx ]