Enter a problem...
Basic Math Examples
(2a+3b)3(2a+3b)3
Step 1
Use the Binomial Theorem.
(2a)3+3(2a)2(3b)+3(2a)(3b)2+(3b)3
Step 2
Step 2.1
Apply the product rule to 2a.
23a3+3(2a)2(3b)+3(2a)(3b)2+(3b)3
Step 2.2
Raise 2 to the power of 3.
8a3+3(2a)2(3b)+3(2a)(3b)2+(3b)3
Step 2.3
Rewrite using the commutative property of multiplication.
8a3+3⋅3(2a)2b+3(2a)(3b)2+(3b)3
Step 2.4
Multiply 3 by 3.
8a3+9(2a)2b+3(2a)(3b)2+(3b)3
Step 2.5
Apply the product rule to 2a.
8a3+9(22a2)b+3(2a)(3b)2+(3b)3
Step 2.6
Raise 2 to the power of 2.
8a3+9(4a2)b+3(2a)(3b)2+(3b)3
Step 2.7
Multiply 4 by 9.
8a3+36a2b+3(2a)(3b)2+(3b)3
Step 2.8
Multiply 2 by 3.
8a3+36a2b+6a(3b)2+(3b)3
Step 2.9
Apply the product rule to 3b.
8a3+36a2b+6a(32b2)+(3b)3
Step 2.10
Rewrite using the commutative property of multiplication.
8a3+36a2b+6⋅32ab2+(3b)3
Step 2.11
Raise 3 to the power of 2.
8a3+36a2b+6⋅9ab2+(3b)3
Step 2.12
Multiply 6 by 9.
8a3+36a2b+54ab2+(3b)3
Step 2.13
Apply the product rule to 3b.
8a3+36a2b+54ab2+33b3
Step 2.14
Raise 3 to the power of 3.
8a3+36a2b+54ab2+27b3
8a3+36a2b+54ab2+27b3