Basic Math Examples

Factor a^2(b+c)-(b+c)^3
a2(b+c)-(b+c)3a2(b+c)(b+c)3
Step 1
Factor b+cb+c out of a2(b+c)-(b+c)3a2(b+c)(b+c)3.
Tap for more steps...
Step 1.1
Factor b+cb+c out of a2(b+c)a2(b+c).
(b+c)a2-(b+c)3(b+c)a2(b+c)3
Step 1.2
Factor b+cb+c out of -(b+c)3(b+c)3.
(b+c)a2+(b+c)(-(b+c)2)(b+c)a2+(b+c)((b+c)2)
Step 1.3
Factor b+cb+c out of (b+c)a2+(b+c)(-(b+c)2)(b+c)a2+(b+c)((b+c)2).
(b+c)(a2-(b+c)2)(b+c)(a2(b+c)2)
(b+c)(a2-(b+c)2)(b+c)(a2(b+c)2)
Step 2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=aa=a and b=b+cb=b+c.
(b+c)((a+b+c)(a-(b+c)))(b+c)((a+b+c)(a(b+c)))
Step 3
Factor.
Tap for more steps...
Step 3.1
Simplify.
Tap for more steps...
Step 3.1.1
Remove unnecessary parentheses.
(b+c)((a+b+c)(a-(b+c)))(b+c)((a+b+c)(a(b+c)))
Step 3.1.2
Apply the distributive property.
(b+c)((a+b+c)(a-b-c))(b+c)((a+b+c)(abc))
(b+c)((a+b+c)(a-b-c))(b+c)((a+b+c)(abc))
Step 3.2
Remove unnecessary parentheses.
(b+c)(a+b+c)(a-b-c)(b+c)(a+b+c)(abc)
(b+c)(a+b+c)(a-b-c)(b+c)(a+b+c)(abc)
 [x2  12  π  xdx ]  x2  12  π  xdx