Basic Math Examples

Factor a^7+ab^6
a7+ab6
Step 1
Factor a out of a7+ab6.
Tap for more steps...
Step 1.1
Factor a out of a7.
aa6+ab6
Step 1.2
Factor a out of ab6.
aa6+a(b6)
Step 1.3
Factor a out of aa6+a(b6).
a(a6+b6)
a(a6+b6)
Step 2
Rewrite a6 as (a2)3.
a((a2)3+b6)
Step 3
Rewrite b6 as (b2)3.
a((a2)3+(b2)3)
Step 4
Since both terms are perfect cubes, factor using the sum of cubes formula, a3+b3=(a+b)(a2-ab+b2) where a=a2 and b=b2.
a((a2+b2)((a2)2-a2b2+(b2)2))
Step 5
Factor.
Tap for more steps...
Step 5.1
Simplify.
Tap for more steps...
Step 5.1.1
Multiply the exponents in (a2)2.
Tap for more steps...
Step 5.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
a((a2+b2)(a22-a2b2+(b2)2))
Step 5.1.1.2
Multiply 2 by 2.
a((a2+b2)(a4-a2b2+(b2)2))
a((a2+b2)(a4-a2b2+(b2)2))
Step 5.1.2
Multiply the exponents in (b2)2.
Tap for more steps...
Step 5.1.2.1
Apply the power rule and multiply exponents, (am)n=amn.
a((a2+b2)(a4-a2b2+b22))
Step 5.1.2.2
Multiply 2 by 2.
a((a2+b2)(a4-a2b2+b4))
a((a2+b2)(a4-a2b2+b4))
a((a2+b2)(a4-a2b2+b4))
Step 5.2
Remove unnecessary parentheses.
a(a2+b2)(a4-a2b2+b4)
a(a2+b2)(a4-a2b2+b4)
 [x2  12  π  xdx ]