Basic Math Examples

Factor square root of 8ab- square root of 50abc^2+ square root of 18ab^3
8ab-50abc2+18ab38ab50abc2+18ab3
Step 1
Use nax=axnnax=axn to rewrite 8ab8ab as (8ab)12(8ab)12.
(8ab)12-50abc2+18ab3(8ab)1250abc2+18ab3
Step 2
Use nax=axnnax=axn to rewrite 50abc250abc2 as (50abc2)12(50abc2)12.
(8ab)12-(50abc2)12+18ab3(8ab)12(50abc2)12+18ab3
Step 3
Use nax=axnnax=axn to rewrite 18ab318ab3 as (18ab3)12(18ab3)12.
(8ab)12-(50abc2)12+(18ab3)12(8ab)12(50abc2)12+(18ab3)12
Step 4
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 4.1
Apply the product rule to 8ab8ab.
(8a)12b12-(50abc2)12+(18ab3)12(8a)12b12(50abc2)12+(18ab3)12
Step 4.2
Apply the product rule to 8a8a.
812a12b12-(50abc2)12+(18ab3)12812a12b12(50abc2)12+(18ab3)12
812a12b12-(50abc2)12+(18ab3)12812a12b12(50abc2)12+(18ab3)12
Step 5
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 5.1
Apply the product rule to 50abc250abc2.
812a12b12-((50ab)12(c2)12)+(18ab3)12812a12b12((50ab)12(c2)12)+(18ab3)12
Step 5.2
Apply the product rule to 50ab50ab.
812a12b12-((50a)12b12(c2)12)+(18ab3)12812a12b12((50a)12b12(c2)12)+(18ab3)12
Step 5.3
Apply the product rule to 50a50a.
812a12b12-(5012a12b12(c2)12)+(18ab3)12812a12b12(5012a12b12(c2)12)+(18ab3)12
812a12b12-(5012a12b12(c2)12)+(18ab3)12812a12b12(5012a12b12(c2)12)+(18ab3)12
Step 6
Multiply the exponents in (c2)12(c2)12.
Tap for more steps...
Step 6.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
812a12b12-(5012a12b12c2(12))+(18ab3)12812a12b12(5012a12b12c2(12))+(18ab3)12
Step 6.2
Cancel the common factor of 22.
Tap for more steps...
Step 6.2.1
Cancel the common factor.
812a12b12-(5012a12b12c2(12))+(18ab3)12
Step 6.2.2
Rewrite the expression.
812a12b12-(5012a12b12c1)+(18ab3)12
812a12b12-(5012a12b12c1)+(18ab3)12
812a12b12-(5012a12b12c1)+(18ab3)12
Step 7
Simplify.
812a12b12-(5012a12b12c)+(18ab3)12
Step 8
Remove parentheses.
812a12b12-(5012a12b12)c+(18ab3)12
Step 9
Remove parentheses.
812a12b12-(5012a12)b12c+(18ab3)12
Step 10
Remove parentheses.
812a12b12-5012a12b12c+(18ab3)12
Step 11
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 11.1
Apply the product rule to 18ab3.
812a12b12-5012a12b12c+(18a)12(b3)12
Step 11.2
Apply the product rule to 18a.
812a12b12-5012a12b12c+1812a12(b3)12
812a12b12-5012a12b12c+1812a12(b3)12
Step 12
Multiply the exponents in (b3)12.
Tap for more steps...
Step 12.1
Apply the power rule and multiply exponents, (am)n=amn.
812a12b12-5012a12b12c+1812a12b3(12)
Step 12.2
Combine 3 and 12.
812a12b12-5012a12b12c+1812a12b32
812a12b12-5012a12b12c+1812a12b32
Step 13
Rewrite 812a12b12-5012a12b12c+1812a12b32 in a factored form.
Tap for more steps...
Step 13.1
Factor a12b12 out of 812a12b12-5012a12b12c+1812a12b32.
Tap for more steps...
Step 13.1.1
Factor a12b12 out of 812a12b12.
a12b12(812)-5012a12b12c+1812a12b32
Step 13.1.2
Factor a12b12 out of -5012a12b12c.
a12b12(812)+a12b12(-5012c)+1812a12b32
Step 13.1.3
Factor a12b12 out of 1812a12b32.
a12b12(812)+a12b12(-5012c)+a12b12(1812b22)
Step 13.1.4
Factor a12b12 out of a12b12(812)+a12b12(-5012c).
a12b12(812-5012c)+a12b12(1812b22)
Step 13.1.5
Factor a12b12 out of a12b12(812-5012c)+a12b12(1812b22).
a12b12(812-5012c+1812b22)
a12b12(812-5012c+1812b22)
Step 13.2
Divide 2 by 2.
a12b12(812-5012c+1812b1)
Step 13.3
Simplify.
a12b12(812-5012c+1812b)
a12b12(812-5012c+1812b)
Step 14
Factor.
Tap for more steps...
Step 14.1
Factor -1 out of 812-5012c+1812b.
Tap for more steps...
Step 14.1.1
Reorder the expression.
Tap for more steps...
Step 14.1.1.1
Move 812.
a12b12(-5012c+1812b+812)
Step 14.1.1.2
Reorder -5012c and 1812b.
a12b12(1812b-5012c+812)
a12b12(1812b-5012c+812)
Step 14.1.2
Factor -1 out of 1812b.
a12b12(-(-1812b)-5012c+812)
Step 14.1.3
Factor -1 out of -5012c.
a12b12(-(-1812b)-(5012c)+812)
Step 14.1.4
Factor -1 out of 812.
a12b12(-(-1812b)-(5012c)-1(-812))
Step 14.1.5
Factor -1 out of -(-1812b)-(5012c).
a12b12(-(-1812b+5012c)-1(-812))
Step 14.1.6
Factor -1 out of -(-1812b+5012c)-1(-812).
a12b12(-(-1812b+5012c-812))
a12b12(-(-1812b+5012c-812))
Step 14.2
Remove unnecessary parentheses.
a12b12-1(-1812b+5012c-812)
a12b12-1(-1812b+5012c-812)
Step 15
Factor out negative.
-(a12b12(-1812b+5012c-812))
Step 16
Remove unnecessary parentheses.
-a12b12(-1812b+5012c-812)
Step 17
Factor.
Tap for more steps...
Step 17.1
Factor -1 out of -1812b+5012c-812.
Tap for more steps...
Step 17.1.1
Factor -1 out of -1812b.
-a12b12(-(1812b)+5012c-812)
Step 17.1.2
Factor -1 out of 5012c.
-a12b12(-(1812b)-(-5012c)-812)
Step 17.1.3
Factor -1 out of -812.
-a12b12(-(1812b)-(-5012c)-(812))
Step 17.1.4
Factor -1 out of -(1812b)-(-5012c).
-a12b12(-(1812b-5012c)-(812))
Step 17.1.5
Factor -1 out of -(1812b-5012c)-(812).
-a12b12(-(1812b-5012c+812))
-a12b12(-(1812b-5012c+812))
Step 17.2
Remove unnecessary parentheses.
-a12b12-1(1812b-5012c+812)
-a12b12-1(1812b-5012c+812)
Step 18
Combine exponents.
Tap for more steps...
Step 18.1
Factor out negative.
-(a12b12-1(1812b-5012c+812))
Step 18.2
Multiply -1 by -1.
1(a12b12(1812b-5012c+812))
Step 18.3
Multiply a12 by 1.
a12(b12(1812b-5012c+812))
a12(b12(1812b-5012c+812))
Step 19
Remove unnecessary parentheses.
a12b12(1812b-5012c+812)
 [x2  12  π  xdx ]