Enter a problem...
Basic Math Examples
(-79,-3)(−79,−3) , (-79,56)(−79,56)
Step 1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2Distance=√(x2−x1)2+(y2−y1)2
Step 2
Substitute the actual values of the points into the distance formula.
√((-79)-(-79))2+(56-(-3))2√((−79)−(−79))2+(56−(−3))2
Step 3
Step 3.1
Multiply -(-79)−(−79).
Step 3.1.1
Multiply -1−1 by -1−1.
√(-79+1(79))2+(56-(-3))2√(−79+1(79))2+(56−(−3))2
Step 3.1.2
Multiply 7979 by 11.
√(-79+79)2+(56-(-3))2√(−79+79)2+(56−(−3))2
√(-79+79)2+(56-(-3))2√(−79+79)2+(56−(−3))2
Step 3.2
Combine the numerators over the common denominator.
√(-7+79)2+(56-(-3))2√(−7+79)2+(56−(−3))2
Step 3.3
Simplify the expression.
Step 3.3.1
Add -7−7 and 77.
√(09)2+(56-(-3))2√(09)2+(56−(−3))2
Step 3.3.2
Divide 00 by 99.
√02+(56-(-3))2√02+(56−(−3))2
Step 3.3.3
Raising 00 to any positive power yields 00.
√0+(56-(-3))2√0+(56−(−3))2
Step 3.3.4
Multiply -1−1 by -3−3.
√0+(56+3)2√0+(56+3)2
√0+(56+3)2√0+(56+3)2
Step 3.4
To write 33 as a fraction with a common denominator, multiply by 6666.
√0+(56+3⋅66)2√0+(56+3⋅66)2
Step 3.5
Combine 33 and 6666.
√0+(56+3⋅66)2√0+(56+3⋅66)2
Step 3.6
Combine the numerators over the common denominator.
√0+(5+3⋅66)2√0+(5+3⋅66)2
Step 3.7
Simplify the numerator.
Step 3.7.1
Multiply 33 by 66.
√0+(5+186)2√0+(5+186)2
Step 3.7.2
Add 55 and 1818.
√0+(236)2√0+(236)2
√0+(236)2√0+(236)2
Step 3.8
Apply the product rule to 236236.
√0+23262√0+23262
Step 3.9
Raise 2323 to the power of 22.
√0+52962√0+52962
Step 3.10
Raise 66 to the power of 22.
√0+52936√0+52936
Step 3.11
Add 00 and 5293652936.
√52936√52936
Step 3.12
Rewrite √52936 as √529√36.
√529√36
Step 3.13
Simplify the numerator.
Step 3.13.1
Rewrite 529 as 232.
√232√36
Step 3.13.2
Pull terms out from under the radical, assuming positive real numbers.
23√36
23√36
Step 3.14
Simplify the denominator.
Step 3.14.1
Rewrite 36 as 62.
23√62
Step 3.14.2
Pull terms out from under the radical, assuming positive real numbers.
236
236
236
Step 4