Basic Math Examples

Find the Sample Standard Deviation 3 , 7 , 11 , 15
33 , 77 , 1111 , 1515
Step 1
Find the mean.
Tap for more steps...
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
x=3+7+11+154¯x=3+7+11+154
Step 1.2
Simplify the numerator.
Tap for more steps...
Step 1.2.1
Add 33 and 77.
x=10+11+154¯x=10+11+154
Step 1.2.2
Add 1010 and 1111.
x=21+154¯x=21+154
Step 1.2.3
Add 2121 and 1515.
x=364¯x=364
x=364¯x=364
Step 1.3
Divide 3636 by 44.
x=9¯x=9
x=9¯x=9
Step 2
Simplify each value in the list.
Tap for more steps...
Step 2.1
Convert 33 to a decimal value.
33
Step 2.2
Convert 77 to a decimal value.
77
Step 2.3
Convert 1111 to a decimal value.
1111
Step 2.4
Convert 1515 to a decimal value.
1515
Step 2.5
The simplified values are 3,7,11,153,7,11,15.
3,7,11,153,7,11,15
3,7,11,153,7,11,15
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1s=ni=1(xixavg)2n1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=(3-9)2+(7-9)2+(11-9)2+(15-9)24-1s=(39)2+(79)2+(119)2+(159)241
Step 5
Simplify the result.
Tap for more steps...
Step 5.1
Subtract 99 from 33.
s=(-6)2+(7-9)2+(11-9)2+(15-9)24-1s=(6)2+(79)2+(119)2+(159)241
Step 5.2
Raise -6 to the power of 2.
s=36+(7-9)2+(11-9)2+(15-9)24-1
Step 5.3
Subtract 9 from 7.
s=36+(-2)2+(11-9)2+(15-9)24-1
Step 5.4
Raise -2 to the power of 2.
s=36+4+(11-9)2+(15-9)24-1
Step 5.5
Subtract 9 from 11.
s=36+4+22+(15-9)24-1
Step 5.6
Raise 2 to the power of 2.
s=36+4+4+(15-9)24-1
Step 5.7
Subtract 9 from 15.
s=36+4+4+624-1
Step 5.8
Raise 6 to the power of 2.
s=36+4+4+364-1
Step 5.9
Add 36 and 4.
s=40+4+364-1
Step 5.10
Add 40 and 4.
s=44+364-1
Step 5.11
Add 44 and 36.
s=804-1
Step 5.12
Subtract 1 from 4.
s=803
Step 5.13
Rewrite 803 as 803.
s=803
Step 5.14
Simplify the numerator.
Tap for more steps...
Step 5.14.1
Rewrite 80 as 425.
Tap for more steps...
Step 5.14.1.1
Factor 16 out of 80.
s=16(5)3
Step 5.14.1.2
Rewrite 16 as 42.
s=4253
s=4253
Step 5.14.2
Pull terms out from under the radical.
s=453
s=453
Step 5.15
Multiply 453 by 33.
s=45333
Step 5.16
Combine and simplify the denominator.
Tap for more steps...
Step 5.16.1
Multiply 453 by 33.
s=45333
Step 5.16.2
Raise 3 to the power of 1.
s=45333
Step 5.16.3
Raise 3 to the power of 1.
s=45333
Step 5.16.4
Use the power rule aman=am+n to combine exponents.
s=45331+1
Step 5.16.5
Add 1 and 1.
s=45332
Step 5.16.6
Rewrite 32 as 3.
Tap for more steps...
Step 5.16.6.1
Use nax=axn to rewrite 3 as 312.
s=453(312)2
Step 5.16.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=4533122
Step 5.16.6.3
Combine 12 and 2.
s=453322
Step 5.16.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.16.6.4.1
Cancel the common factor.
s=453322
Step 5.16.6.4.2
Rewrite the expression.
s=4533
s=4533
Step 5.16.6.5
Evaluate the exponent.
s=4533
s=4533
s=4533
Step 5.17
Simplify the numerator.
Tap for more steps...
Step 5.17.1
Combine using the product rule for radicals.
s=4353
Step 5.17.2
Multiply 3 by 5.
s=4153
s=4153
s=4153
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
5.2
 [x2  12  π  xdx ]