Enter a problem...
Basic Math Examples
33 , 77 , 1111 , 1515
Step 1
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
‾x=3+7+11+154¯x=3+7+11+154
Step 1.2
Simplify the numerator.
Step 1.2.1
Add 33 and 77.
‾x=10+11+154¯x=10+11+154
Step 1.2.2
Add 1010 and 1111.
‾x=21+154¯x=21+154
Step 1.2.3
Add 2121 and 1515.
‾x=364¯x=364
‾x=364¯x=364
Step 1.3
Divide 3636 by 44.
‾x=9¯x=9
‾x=9¯x=9
Step 2
Step 2.1
Convert 33 to a decimal value.
33
Step 2.2
Convert 77 to a decimal value.
77
Step 2.3
Convert 1111 to a decimal value.
1111
Step 2.4
Convert 1515 to a decimal value.
1515
Step 2.5
The simplified values are 3,7,11,153,7,11,15.
3,7,11,153,7,11,15
3,7,11,153,7,11,15
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1s=n∑i=1√(xi−xavg)2n−1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(3-9)2+(7-9)2+(11-9)2+(15-9)24-1s=√(3−9)2+(7−9)2+(11−9)2+(15−9)24−1
Step 5
Step 5.1
Subtract 99 from 33.
s=√(-6)2+(7-9)2+(11-9)2+(15-9)24-1s=√(−6)2+(7−9)2+(11−9)2+(15−9)24−1
Step 5.2
Raise -6 to the power of 2.
s=√36+(7-9)2+(11-9)2+(15-9)24-1
Step 5.3
Subtract 9 from 7.
s=√36+(-2)2+(11-9)2+(15-9)24-1
Step 5.4
Raise -2 to the power of 2.
s=√36+4+(11-9)2+(15-9)24-1
Step 5.5
Subtract 9 from 11.
s=√36+4+22+(15-9)24-1
Step 5.6
Raise 2 to the power of 2.
s=√36+4+4+(15-9)24-1
Step 5.7
Subtract 9 from 15.
s=√36+4+4+624-1
Step 5.8
Raise 6 to the power of 2.
s=√36+4+4+364-1
Step 5.9
Add 36 and 4.
s=√40+4+364-1
Step 5.10
Add 40 and 4.
s=√44+364-1
Step 5.11
Add 44 and 36.
s=√804-1
Step 5.12
Subtract 1 from 4.
s=√803
Step 5.13
Rewrite √803 as √80√3.
s=√80√3
Step 5.14
Simplify the numerator.
Step 5.14.1
Rewrite 80 as 42⋅5.
Step 5.14.1.1
Factor 16 out of 80.
s=√16(5)√3
Step 5.14.1.2
Rewrite 16 as 42.
s=√42⋅5√3
s=√42⋅5√3
Step 5.14.2
Pull terms out from under the radical.
s=4√5√3
s=4√5√3
Step 5.15
Multiply 4√5√3 by √3√3.
s=4√5√3⋅√3√3
Step 5.16
Combine and simplify the denominator.
Step 5.16.1
Multiply 4√5√3 by √3√3.
s=4√5√3√3√3
Step 5.16.2
Raise √3 to the power of 1.
s=4√5√3√3√3
Step 5.16.3
Raise √3 to the power of 1.
s=4√5√3√3√3
Step 5.16.4
Use the power rule aman=am+n to combine exponents.
s=4√5√3√31+1
Step 5.16.5
Add 1 and 1.
s=4√5√3√32
Step 5.16.6
Rewrite √32 as 3.
Step 5.16.6.1
Use n√ax=axn to rewrite √3 as 312.
s=4√5√3(312)2
Step 5.16.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=4√5√3312⋅2
Step 5.16.6.3
Combine 12 and 2.
s=4√5√3322
Step 5.16.6.4
Cancel the common factor of 2.
Step 5.16.6.4.1
Cancel the common factor.
s=4√5√3322
Step 5.16.6.4.2
Rewrite the expression.
s=4√5√33
s=4√5√33
Step 5.16.6.5
Evaluate the exponent.
s=4√5√33
s=4√5√33
s=4√5√33
Step 5.17
Simplify the numerator.
Step 5.17.1
Combine using the product rule for radicals.
s=4√3⋅53
Step 5.17.2
Multiply 3 by 5.
s=4√153
s=4√153
s=4√153
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
5.2