Basic Math Examples

Solve for a cos(3a)+sin(3a)=3(cos(a)-sin(a))-2(cos(a)-sin(a))^3
cos(3a)+sin(3a)=3(cos(a)-sin(a))-2(cos(a)-sin(a))3
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Apply the distributive property.
cos(3a)+sin(3a)=3cos(a)+3(-sin(a))-2(cos(a)-sin(a))3
Step 1.2
Multiply -1 by 3.
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2(cos(a)-sin(a))3
Step 1.3
Use the Binomial Theorem.
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2(cos3(a)+3cos2(a)(-sin(a))+3cos(a)(-sin(a))2+(-sin(a))3)
Step 1.4
Simplify each term.
Tap for more steps...
Step 1.4.1
Multiply -1 by 3.
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2(cos3(a)-3cos2(a)sin(a)+3cos(a)(-sin(a))2+(-sin(a))3)
Step 1.4.2
Apply the product rule to -sin(a).
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2(cos3(a)-3cos2(a)sin(a)+3cos(a)((-1)2sin2(a))+(-sin(a))3)
Step 1.4.3
Raise -1 to the power of 2.
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2(cos3(a)-3cos2(a)sin(a)+3cos(a)(1sin2(a))+(-sin(a))3)
Step 1.4.4
Multiply sin2(a) by 1.
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2(cos3(a)-3cos2(a)sin(a)+3cos(a)sin2(a)+(-sin(a))3)
Step 1.4.5
Apply the product rule to -sin(a).
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2(cos3(a)-3cos2(a)sin(a)+3cos(a)sin2(a)+(-1)3sin3(a))
Step 1.4.6
Raise -1 to the power of 3.
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2(cos3(a)-3cos2(a)sin(a)+3cos(a)sin2(a)-sin3(a))
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2(cos3(a)-3cos2(a)sin(a)+3cos(a)sin2(a)-sin3(a))
Step 1.5
Apply the distributive property.
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2cos3(a)-2(-3cos2(a)sin(a))-2(3cos(a)sin2(a))-2(-sin3(a))
Step 1.6
Simplify.
Tap for more steps...
Step 1.6.1
Multiply -3 by -2.
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2cos3(a)+6(cos2(a)sin(a))-2(3cos(a)sin2(a))-2(-sin3(a))
Step 1.6.2
Multiply 3 by -2.
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2cos3(a)+6(cos2(a)sin(a))-6(cos(a)sin2(a))-2(-sin3(a))
Step 1.6.3
Multiply -1 by -2.
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2cos3(a)+6(cos2(a)sin(a))-6(cos(a)sin2(a))+2sin3(a)
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2cos3(a)+6(cos2(a)sin(a))-6(cos(a)sin2(a))+2sin3(a)
Step 1.7
Remove parentheses.
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2cos3(a)+6cos2(a)sin(a)-6cos(a)sin2(a)+2sin3(a)
cos(3a)+sin(3a)=3cos(a)-3sin(a)-2cos3(a)+6cos2(a)sin(a)-6cos(a)sin2(a)+2sin3(a)
Step 2
Graph each side of the equation. The solution is the x-value of the point of intersection.
a-0.1,0.1,15,-0.3,0.3,-25,25
Step 3
The result can be shown in multiple forms.
Exact Form:
a-0.1,0.1,15,-0.3,0.3,-25,25
Decimal Form:
a-0.1,0.1,0.2,-0.3,0.3,-0.4,0.4
Step 4
 [x2  12  π  xdx ]