Basic Math Examples

Simplify ((6z^6a^5)/(5z^9a))^2
(6z6a55z9a)2(6z6a55z9a)2
Step 1
Cancel the common factor of z6z6 and z9z9.
Tap for more steps...
Step 1.1
Factor z6z6 out of 6z6a56z6a5.
(z6(6a5)5z9a)2(z6(6a5)5z9a)2
Step 1.2
Cancel the common factors.
Tap for more steps...
Step 1.2.1
Factor z6z6 out of 5z9a5z9a.
(z6(6a5)z6(5z3a))2(z6(6a5)z6(5z3a))2
Step 1.2.2
Cancel the common factor.
(z6(6a5)z6(5z3a))2
Step 1.2.3
Rewrite the expression.
(6a55z3a)2
(6a55z3a)2
(6a55z3a)2
Step 2
Cancel the common factor of a5 and a.
Tap for more steps...
Step 2.1
Factor a out of 6a5.
(a(6a4)5z3a)2
Step 2.2
Cancel the common factors.
Tap for more steps...
Step 2.2.1
Factor a out of 5z3a.
(a(6a4)a(5z3))2
Step 2.2.2
Cancel the common factor.
(a(6a4)a(5z3))2
Step 2.2.3
Rewrite the expression.
(6a45z3)2
(6a45z3)2
(6a45z3)2
Step 3
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 3.1
Apply the product rule to 6a45z3.
(6a4)2(5z3)2
Step 3.2
Apply the product rule to 6a4.
62(a4)2(5z3)2
Step 3.3
Apply the product rule to 5z3.
62(a4)252(z3)2
62(a4)252(z3)2
Step 4
Simplify the numerator.
Tap for more steps...
Step 4.1
Raise 6 to the power of 2.
36(a4)252(z3)2
Step 4.2
Multiply the exponents in (a4)2.
Tap for more steps...
Step 4.2.1
Apply the power rule and multiply exponents, (am)n=amn.
36a4252(z3)2
Step 4.2.2
Multiply 4 by 2.
36a852(z3)2
36a852(z3)2
36a852(z3)2
Step 5
Simplify the denominator.
Tap for more steps...
Step 5.1
Raise 5 to the power of 2.
36a825(z3)2
Step 5.2
Multiply the exponents in (z3)2.
Tap for more steps...
Step 5.2.1
Apply the power rule and multiply exponents, (am)n=amn.
36a825z32
Step 5.2.2
Multiply 3 by 2.
36a825z6
36a825z6
36a825z6
 [x2  12  π  xdx ]