Enter a problem...
Basic Math Examples
(6z6a55z9a)2(6z6a55z9a)2
Step 1
Step 1.1
Factor z6z6 out of 6z6a56z6a5.
(z6(6a5)5z9a)2(z6(6a5)5z9a)2
Step 1.2
Cancel the common factors.
Step 1.2.1
Factor z6z6 out of 5z9a5z9a.
(z6(6a5)z6(5z3a))2(z6(6a5)z6(5z3a))2
Step 1.2.2
Cancel the common factor.
(z6(6a5)z6(5z3a))2
Step 1.2.3
Rewrite the expression.
(6a55z3a)2
(6a55z3a)2
(6a55z3a)2
Step 2
Step 2.1
Factor a out of 6a5.
(a(6a4)5z3a)2
Step 2.2
Cancel the common factors.
Step 2.2.1
Factor a out of 5z3a.
(a(6a4)a(5z3))2
Step 2.2.2
Cancel the common factor.
(a(6a4)a(5z3))2
Step 2.2.3
Rewrite the expression.
(6a45z3)2
(6a45z3)2
(6a45z3)2
Step 3
Step 3.1
Apply the product rule to 6a45z3.
(6a4)2(5z3)2
Step 3.2
Apply the product rule to 6a4.
62(a4)2(5z3)2
Step 3.3
Apply the product rule to 5z3.
62(a4)252(z3)2
62(a4)252(z3)2
Step 4
Step 4.1
Raise 6 to the power of 2.
36(a4)252(z3)2
Step 4.2
Multiply the exponents in (a4)2.
Step 4.2.1
Apply the power rule and multiply exponents, (am)n=amn.
36a4⋅252(z3)2
Step 4.2.2
Multiply 4 by 2.
36a852(z3)2
36a852(z3)2
36a852(z3)2
Step 5
Step 5.1
Raise 5 to the power of 2.
36a825(z3)2
Step 5.2
Multiply the exponents in (z3)2.
Step 5.2.1
Apply the power rule and multiply exponents, (am)n=amn.
36a825z3⋅2
Step 5.2.2
Multiply 3 by 2.
36a825z6
36a825z6
36a825z6