Enter a problem...
Basic Math Examples
(214⋅213)6(214⋅213)6
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
((2+14)⋅213)6((2+14)⋅213)6
Step 1.2
Add 22 and 1414.
Step 1.2.1
To write 22 as a fraction with a common denominator, multiply by 4444.
((2⋅44+14)⋅213)6((2⋅44+14)⋅213)6
Step 1.2.2
Combine 22 and 4444.
((2⋅44+14)⋅213)6((2⋅44+14)⋅213)6
Step 1.2.3
Combine the numerators over the common denominator.
(2⋅4+14⋅213)6(2⋅4+14⋅213)6
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 22 by 44.
(8+14⋅213)6(8+14⋅213)6
Step 1.2.4.2
Add 88 and 11.
(94⋅213)6(94⋅213)6
(94⋅213)6(94⋅213)6
(94⋅213)6(94⋅213)6
(94⋅213)6(94⋅213)6
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
(94⋅(2+13))6(94⋅(2+13))6
Step 2.2
Add 22 and 1313.
Step 2.2.1
To write 22 as a fraction with a common denominator, multiply by 3333.
(94⋅(2⋅33+13))6(94⋅(2⋅33+13))6
Step 2.2.2
Combine 22 and 3333.
(94⋅(2⋅33+13))6(94⋅(2⋅33+13))6
Step 2.2.3
Combine the numerators over the common denominator.
(94⋅2⋅3+13)6(94⋅2⋅3+13)6
Step 2.2.4
Simplify the numerator.
Step 2.2.4.1
Multiply 22 by 33.
(94⋅6+13)6(94⋅6+13)6
Step 2.2.4.2
Add 66 and 11.
(94⋅73)6(94⋅73)6
(94⋅73)6(94⋅73)6
(94⋅73)6(94⋅73)6
(94⋅73)6(94⋅73)6
Step 3
Step 3.1
Factor 33 out of 99.
(3(3)4⋅73)6(3(3)4⋅73)6
Step 3.2
Cancel the common factor.
(3⋅34⋅73)6
Step 3.3
Rewrite the expression.
(34⋅7)6
(34⋅7)6
Step 4
Combine 34 and 7.
(3⋅74)6
Step 5
Step 5.1
Multiply 3 by 7.
(214)6
Step 5.2
Apply the product rule to 214.
21646
Step 5.3
Raise 21 to the power of 6.
8576612146
Step 5.4
Raise 4 to the power of 6.
857661214096
857661214096
Step 6
The result can be shown in multiple forms.
Exact Form:
857661214096
Decimal Form:
20938.99438476…
Mixed Number Form:
2093840734096