Basic Math Examples

Solve for m (if(3m+2y))/(5m-4y)=9/4
if(3m+2y)5m-4y=94
Step 1
Multiply the numerator of the first fraction by the denominator of the second fraction. Set this equal to the product of the denominator of the first fraction and the numerator of the second fraction.
if(3m+2y)4=(5m-4y)9
Step 2
Solve the equation for m.
Tap for more steps...
Step 2.1
Simplify if(3m+2y)4.
Tap for more steps...
Step 2.1.1
Rewrite.
0+0+if(3m+2y)4=(5m-4y)9
Step 2.1.2
Simplify by multiplying through.
Tap for more steps...
Step 2.1.2.1
Apply the distributive property.
(if(3m)+if(2y))4=(5m-4y)9
Step 2.1.2.2
Reorder.
Tap for more steps...
Step 2.1.2.2.1
Rewrite using the commutative property of multiplication.
(i3fm+if(2y))4=(5m-4y)9
Step 2.1.2.2.2
Rewrite using the commutative property of multiplication.
(i3fm+i2fy)4=(5m-4y)9
(i3fm+i2fy)4=(5m-4y)9
(i3fm+i2fy)4=(5m-4y)9
Step 2.1.3
Simplify each term.
Tap for more steps...
Step 2.1.3.1
Move 3 to the left of i.
(3ifm+i2fy)4=(5m-4y)9
Step 2.1.3.2
Move 2 to the left of i.
(3ifm+2ify)4=(5m-4y)9
(3ifm+2ify)4=(5m-4y)9
Step 2.1.4
Simplify by multiplying through.
Tap for more steps...
Step 2.1.4.1
Apply the distributive property.
3ifm4+2ify4=(5m-4y)9
Step 2.1.4.2
Multiply.
Tap for more steps...
Step 2.1.4.2.1
Multiply 4 by 3.
12ifm+2ify4=(5m-4y)9
Step 2.1.4.2.2
Multiply 4 by 2.
12ifm+8ify=(5m-4y)9
12ifm+8ify=(5m-4y)9
12ifm+8ify=(5m-4y)9
12ifm+8ify=(5m-4y)9
Step 2.2
Simplify (5m-4y)9.
Tap for more steps...
Step 2.2.1
Apply the distributive property.
12ifm+8ify=5m9-4y9
Step 2.2.2
Multiply.
Tap for more steps...
Step 2.2.2.1
Multiply 9 by 5.
12ifm+8ify=45m-4y9
Step 2.2.2.2
Multiply 9 by -4.
12ifm+8ify=45m-36y
12ifm+8ify=45m-36y
12ifm+8ify=45m-36y
Step 2.3
Subtract 45m from both sides of the equation.
12ifm+8ify-45m=-36y
Step 2.4
Subtract 8ify from both sides of the equation.
12ifm-45m=-36y-8ify
Step 2.5
Factor 3m out of 12ifm-45m.
Tap for more steps...
Step 2.5.1
Factor 3m out of 12ifm.
3m(4if)-45m=-36y-8ify
Step 2.5.2
Factor 3m out of -45m.
3m(4if)+3m(-15)=-36y-8ify
Step 2.5.3
Factor 3m out of 3m(4if)+3m(-15).
3m(4if-15)=-36y-8ify
3m(4if-15)=-36y-8ify
Step 2.6
Divide each term in 3m(4if-15)=-36y-8ify by 3(4if-15) and simplify.
Tap for more steps...
Step 2.6.1
Divide each term in 3m(4if-15)=-36y-8ify by 3(4if-15).
3m(4if-15)3(4if-15)=-36y3(4if-15)+-8ify3(4if-15)
Step 2.6.2
Simplify the left side.
Tap for more steps...
Step 2.6.2.1
Cancel the common factor of 3.
Tap for more steps...
Step 2.6.2.1.1
Cancel the common factor.
3m(4if-15)3(4if-15)=-36y3(4if-15)+-8ify3(4if-15)
Step 2.6.2.1.2
Rewrite the expression.
m(4if-15)4if-15=-36y3(4if-15)+-8ify3(4if-15)
m(4if-15)4if-15=-36y3(4if-15)+-8ify3(4if-15)
Step 2.6.2.2
Cancel the common factor of 4if-15.
Tap for more steps...
Step 2.6.2.2.1
Cancel the common factor.
m(4if-15)4if-15=-36y3(4if-15)+-8ify3(4if-15)
Step 2.6.2.2.2
Divide m by 1.
m=-36y3(4if-15)+-8ify3(4if-15)
m=-36y3(4if-15)+-8ify3(4if-15)
m=-36y3(4if-15)+-8ify3(4if-15)
Step 2.6.3
Simplify the right side.
Tap for more steps...
Step 2.6.3.1
Simplify each term.
Tap for more steps...
Step 2.6.3.1.1
Cancel the common factor of -36 and 3.
Tap for more steps...
Step 2.6.3.1.1.1
Factor 3 out of -36y.
m=3(-12y)3(4if-15)+-8ify3(4if-15)
Step 2.6.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 2.6.3.1.1.2.1
Cancel the common factor.
m=3(-12y)3(4if-15)+-8ify3(4if-15)
Step 2.6.3.1.1.2.2
Rewrite the expression.
m=-12y4if-15+-8ify3(4if-15)
m=-12y4if-15+-8ify3(4if-15)
m=-12y4if-15+-8ify3(4if-15)
Step 2.6.3.1.2
Move the negative in front of the fraction.
m=-12y4if-15+-8ify3(4if-15)
Step 2.6.3.1.3
Move the negative in front of the fraction.
m=-12y4if-15-8ify3(4if-15)
m=-12y4if-15-8ify3(4if-15)
Step 2.6.3.2
To write -12y4if-15 as a fraction with a common denominator, multiply by 33.
m=-12y4if-1533-8ify3(4if-15)
Step 2.6.3.3
Write each expression with a common denominator of (4if-15)3, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 2.6.3.3.1
Multiply 12y4if-15 by 33.
m=-12y3(4if-15)3-8ify3(4if-15)
Step 2.6.3.3.2
Reorder the factors of (4if-15)3.
m=-12y33(4if-15)-8ify3(4if-15)
m=-12y33(4if-15)-8ify3(4if-15)
Step 2.6.3.4
Combine the numerators over the common denominator.
m=-12y3-8ify3(4if-15)
Step 2.6.3.5
Simplify the numerator.
Tap for more steps...
Step 2.6.3.5.1
Factor 4y out of -12y3-8ify.
Tap for more steps...
Step 2.6.3.5.1.1
Factor 4y out of -12y3.
m=4y(-33)-8ify3(4if-15)
Step 2.6.3.5.1.2
Factor 4y out of -8ify.
m=4y(-33)+4y(-2if)3(4if-15)
Step 2.6.3.5.1.3
Factor 4y out of 4y(-33)+4y(-2if).
m=4y(-33-2if)3(4if-15)
m=4y(-33-2if)3(4if-15)
Step 2.6.3.5.2
Multiply -3 by 3.
m=4y(-9-2if)3(4if-15)
m=4y(-9-2if)3(4if-15)
Step 2.6.3.6
Simplify with factoring out.
Tap for more steps...
Step 2.6.3.6.1
Rewrite -9 as -1(9).
m=4y(-1(9)-2if)3(4if-15)
Step 2.6.3.6.2
Factor -1 out of -2if.
m=4y(-1(9)-(2if))3(4if-15)
Step 2.6.3.6.3
Factor -1 out of -1(9)-(2if).
m=4y(-1(9+2if))3(4if-15)
Step 2.6.3.6.4
Simplify the expression.
Tap for more steps...
Step 2.6.3.6.4.1
Move the negative in front of the fraction.
m=-(4y)(9+2if)3(4if-15)
Step 2.6.3.6.4.2
Reorder factors in -(4y)(9+2if)3(4if-15).
m=-4y(9+2if)3(4if-15)
m=-4y(9+2if)3(4if-15)
m=-4y(9+2if)3(4if-15)
m=-4y(9+2if)3(4if-15)
m=-4y(9+2if)3(4if-15)
m=-4y(9+2if)3(4if-15)
 [x2  12  π  xdx ]