Enter a problem...
Basic Math Examples
if(3m+2y)5m-4y=94
Step 1
Multiply the numerator of the first fraction by the denominator of the second fraction. Set this equal to the product of the denominator of the first fraction and the numerator of the second fraction.
if(3m+2y)⋅4=(5m-4y)⋅9
Step 2
Step 2.1
Simplify if(3m+2y)⋅4.
Step 2.1.1
Rewrite.
0+0+if(3m+2y)⋅4=(5m-4y)⋅9
Step 2.1.2
Simplify by multiplying through.
Step 2.1.2.1
Apply the distributive property.
(if(3m)+if(2y))⋅4=(5m-4y)⋅9
Step 2.1.2.2
Reorder.
Step 2.1.2.2.1
Rewrite using the commutative property of multiplication.
(i⋅3fm+if(2y))⋅4=(5m-4y)⋅9
Step 2.1.2.2.2
Rewrite using the commutative property of multiplication.
(i⋅3fm+i⋅2fy)⋅4=(5m-4y)⋅9
(i⋅3fm+i⋅2fy)⋅4=(5m-4y)⋅9
(i⋅3fm+i⋅2fy)⋅4=(5m-4y)⋅9
Step 2.1.3
Simplify each term.
Step 2.1.3.1
Move 3 to the left of i.
(3⋅ifm+i⋅2fy)⋅4=(5m-4y)⋅9
Step 2.1.3.2
Move 2 to the left of i.
(3ifm+2ify)⋅4=(5m-4y)⋅9
(3ifm+2ify)⋅4=(5m-4y)⋅9
Step 2.1.4
Simplify by multiplying through.
Step 2.1.4.1
Apply the distributive property.
3ifm⋅4+2ify⋅4=(5m-4y)⋅9
Step 2.1.4.2
Multiply.
Step 2.1.4.2.1
Multiply 4 by 3.
12ifm+2ify⋅4=(5m-4y)⋅9
Step 2.1.4.2.2
Multiply 4 by 2.
12ifm+8ify=(5m-4y)⋅9
12ifm+8ify=(5m-4y)⋅9
12ifm+8ify=(5m-4y)⋅9
12ifm+8ify=(5m-4y)⋅9
Step 2.2
Simplify (5m-4y)⋅9.
Step 2.2.1
Apply the distributive property.
12ifm+8ify=5m⋅9-4y⋅9
Step 2.2.2
Multiply.
Step 2.2.2.1
Multiply 9 by 5.
12ifm+8ify=45m-4y⋅9
Step 2.2.2.2
Multiply 9 by -4.
12ifm+8ify=45m-36y
12ifm+8ify=45m-36y
12ifm+8ify=45m-36y
Step 2.3
Subtract 45m from both sides of the equation.
12ifm+8ify-45m=-36y
Step 2.4
Subtract 8ify from both sides of the equation.
12ifm-45m=-36y-8ify
Step 2.5
Factor 3m out of 12ifm-45m.
Step 2.5.1
Factor 3m out of 12ifm.
3m(4if)-45m=-36y-8ify
Step 2.5.2
Factor 3m out of -45m.
3m(4if)+3m(-15)=-36y-8ify
Step 2.5.3
Factor 3m out of 3m(4if)+3m(-15).
3m(4if-15)=-36y-8ify
3m(4if-15)=-36y-8ify
Step 2.6
Divide each term in 3m(4if-15)=-36y-8ify by 3(4if-15) and simplify.
Step 2.6.1
Divide each term in 3m(4if-15)=-36y-8ify by 3(4if-15).
3m(4if-15)3(4if-15)=-36y3(4if-15)+-8ify3(4if-15)
Step 2.6.2
Simplify the left side.
Step 2.6.2.1
Cancel the common factor of 3.
Step 2.6.2.1.1
Cancel the common factor.
3m(4if-15)3(4if-15)=-36y3(4if-15)+-8ify3(4if-15)
Step 2.6.2.1.2
Rewrite the expression.
m(4if-15)4if-15=-36y3(4if-15)+-8ify3(4if-15)
m(4if-15)4if-15=-36y3(4if-15)+-8ify3(4if-15)
Step 2.6.2.2
Cancel the common factor of 4if-15.
Step 2.6.2.2.1
Cancel the common factor.
m(4if-15)4if-15=-36y3(4if-15)+-8ify3(4if-15)
Step 2.6.2.2.2
Divide m by 1.
m=-36y3(4if-15)+-8ify3(4if-15)
m=-36y3(4if-15)+-8ify3(4if-15)
m=-36y3(4if-15)+-8ify3(4if-15)
Step 2.6.3
Simplify the right side.
Step 2.6.3.1
Simplify each term.
Step 2.6.3.1.1
Cancel the common factor of -36 and 3.
Step 2.6.3.1.1.1
Factor 3 out of -36y.
m=3(-12y)3(4if-15)+-8ify3(4if-15)
Step 2.6.3.1.1.2
Cancel the common factors.
Step 2.6.3.1.1.2.1
Cancel the common factor.
m=3(-12y)3(4if-15)+-8ify3(4if-15)
Step 2.6.3.1.1.2.2
Rewrite the expression.
m=-12y4if-15+-8ify3(4if-15)
m=-12y4if-15+-8ify3(4if-15)
m=-12y4if-15+-8ify3(4if-15)
Step 2.6.3.1.2
Move the negative in front of the fraction.
m=-12y4if-15+-8ify3(4if-15)
Step 2.6.3.1.3
Move the negative in front of the fraction.
m=-12y4if-15-8ify3(4if-15)
m=-12y4if-15-8ify3(4if-15)
Step 2.6.3.2
To write -12y4if-15 as a fraction with a common denominator, multiply by 33.
m=-12y4if-15⋅33-8ify3(4if-15)
Step 2.6.3.3
Write each expression with a common denominator of (4if-15)⋅3, by multiplying each by an appropriate factor of 1.
Step 2.6.3.3.1
Multiply 12y4if-15 by 33.
m=-12y⋅3(4if-15)⋅3-8ify3(4if-15)
Step 2.6.3.3.2
Reorder the factors of (4if-15)⋅3.
m=-12y⋅33(4if-15)-8ify3(4if-15)
m=-12y⋅33(4if-15)-8ify3(4if-15)
Step 2.6.3.4
Combine the numerators over the common denominator.
m=-12y⋅3-8ify3(4if-15)
Step 2.6.3.5
Simplify the numerator.
Step 2.6.3.5.1
Factor 4y out of -12y⋅3-8ify.
Step 2.6.3.5.1.1
Factor 4y out of -12y⋅3.
m=4y(-3⋅3)-8ify3(4if-15)
Step 2.6.3.5.1.2
Factor 4y out of -8ify.
m=4y(-3⋅3)+4y(-2if)3(4if-15)
Step 2.6.3.5.1.3
Factor 4y out of 4y(-3⋅3)+4y(-2if).
m=4y(-3⋅3-2if)3(4if-15)
m=4y(-3⋅3-2if)3(4if-15)
Step 2.6.3.5.2
Multiply -3 by 3.
m=4y(-9-2if)3(4if-15)
m=4y(-9-2if)3(4if-15)
Step 2.6.3.6
Simplify with factoring out.
Step 2.6.3.6.1
Rewrite -9 as -1(9).
m=4y(-1(9)-2if)3(4if-15)
Step 2.6.3.6.2
Factor -1 out of -2if.
m=4y(-1(9)-(2if))3(4if-15)
Step 2.6.3.6.3
Factor -1 out of -1(9)-(2if).
m=4y(-1(9+2if))3(4if-15)
Step 2.6.3.6.4
Simplify the expression.
Step 2.6.3.6.4.1
Move the negative in front of the fraction.
m=-(4y)(9+2if)3(4if-15)
Step 2.6.3.6.4.2
Reorder factors in -(4y)(9+2if)3(4if-15).
m=-4y(9+2if)3(4if-15)
m=-4y(9+2if)3(4if-15)
m=-4y(9+2if)3(4if-15)
m=-4y(9+2if)3(4if-15)
m=-4y(9+2if)3(4if-15)
m=-4y(9+2if)3(4if-15)