Enter a problem...
Basic Math Examples
y2-2y-85y3-3y2⋅25y3-9y4y-16y2−2y−85y3−3y2⋅25y3−9y4y−16
Step 1
Step 1.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is -8−8 and whose sum is -2−2.
-4,2−4,2
Step 1.2
Write the factored form using these integers.
(y-4)(y+2)5y3-3y2⋅25y3-9y4y-16(y−4)(y+2)5y3−3y2⋅25y3−9y4y−16
(y-4)(y+2)5y3-3y2⋅25y3-9y4y-16(y−4)(y+2)5y3−3y2⋅25y3−9y4y−16
Step 2
Step 2.1
Factor y2y2 out of 5y35y3.
(y-4)(y+2)y2(5y)-3y2⋅25y3-9y4y-16(y−4)(y+2)y2(5y)−3y2⋅25y3−9y4y−16
Step 2.2
Factor y2y2 out of -3y2−3y2.
(y-4)(y+2)y2(5y)+y2⋅-3⋅25y3-9y4y-16(y−4)(y+2)y2(5y)+y2⋅−3⋅25y3−9y4y−16
Step 2.3
Factor y2y2 out of y2(5y)+y2⋅-3y2(5y)+y2⋅−3.
(y-4)(y+2)y2(5y-3)⋅25y3-9y4y-16(y−4)(y+2)y2(5y−3)⋅25y3−9y4y−16
(y-4)(y+2)y2(5y-3)⋅25y3-9y4y-16(y−4)(y+2)y2(5y−3)⋅25y3−9y4y−16
Step 3
Step 3.1
Factor yy out of 25y3-9y25y3−9y.
Step 3.1.1
Factor yy out of 25y325y3.
(y-4)(y+2)y2(5y-3)⋅y(25y2)-9y4y-16(y−4)(y+2)y2(5y−3)⋅y(25y2)−9y4y−16
Step 3.1.2
Factor yy out of -9y−9y.
(y-4)(y+2)y2(5y-3)⋅y(25y2)+y⋅-94y-16(y−4)(y+2)y2(5y−3)⋅y(25y2)+y⋅−94y−16
Step 3.1.3
Factor yy out of y(25y2)+y⋅-9y(25y2)+y⋅−9.
(y-4)(y+2)y2(5y-3)⋅y(25y2-9)4y-16(y−4)(y+2)y2(5y−3)⋅y(25y2−9)4y−16
(y-4)(y+2)y2(5y-3)⋅y(25y2-9)4y-16(y−4)(y+2)y2(5y−3)⋅y(25y2−9)4y−16
Step 3.2
Rewrite 25y225y2 as (5y)2(5y)2.
(y-4)(y+2)y2(5y-3)⋅y((5y)2-9)4y-16(y−4)(y+2)y2(5y−3)⋅y((5y)2−9)4y−16
Step 3.3
Rewrite 99 as 3232.
(y-4)(y+2)y2(5y-3)⋅y((5y)2-32)4y-16(y−4)(y+2)y2(5y−3)⋅y((5y)2−32)4y−16
Step 3.4
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=5ya=5y and b=3b=3.
(y-4)(y+2)y2(5y-3)⋅y(5y+3)(5y-3)4y-16(y−4)(y+2)y2(5y−3)⋅y(5y+3)(5y−3)4y−16
(y-4)(y+2)y2(5y-3)⋅y(5y+3)(5y-3)4y-16(y−4)(y+2)y2(5y−3)⋅y(5y+3)(5y−3)4y−16
Step 4
Step 4.1
Factor 44 out of 4y-164y−16.
Step 4.1.1
Factor 44 out of 4y4y.
(y-4)(y+2)y2(5y-3)⋅y(5y+3)(5y-3)4(y)-16(y−4)(y+2)y2(5y−3)⋅y(5y+3)(5y−3)4(y)−16
Step 4.1.2
Factor 44 out of -16−16.
(y-4)(y+2)y2(5y-3)⋅y(5y+3)(5y-3)4y+4⋅-4(y−4)(y+2)y2(5y−3)⋅y(5y+3)(5y−3)4y+4⋅−4
Step 4.1.3
Factor 44 out of 4y+4⋅-44y+4⋅−4.
(y-4)(y+2)y2(5y-3)⋅y(5y+3)(5y-3)4(y-4)(y−4)(y+2)y2(5y−3)⋅y(5y+3)(5y−3)4(y−4)
(y-4)(y+2)y2(5y-3)⋅y(5y+3)(5y-3)4(y-4)(y−4)(y+2)y2(5y−3)⋅y(5y+3)(5y−3)4(y−4)
Step 4.2
Combine.
(y-4)(y+2)(y(5y+3)(5y-3))y2(5y-3)(4(y-4))(y−4)(y+2)(y(5y+3)(5y−3))y2(5y−3)(4(y−4))
Step 4.3
Cancel the common factor of y-4y−4.
Step 4.3.1
Cancel the common factor.
(y-4)(y+2)(y(5y+3)(5y-3))y2(5y-3)(4(y-4))
Step 4.3.2
Rewrite the expression.
(y+2)(y(5y+3)(5y-3))y2(5y-3)⋅(4)
(y+2)(y(5y+3)(5y-3))y2(5y-3)⋅(4)
Step 4.4
Cancel the common factor of y and y2.
Step 4.4.1
Factor y out of (y+2)(y(5y+3)(5y-3)).
y((y+2)((5y+3)(5y-3)))y2(5y-3)⋅(4)
Step 4.4.2
Cancel the common factors.
Step 4.4.2.1
Factor y out of y2(5y-3)⋅(4).
y((y+2)((5y+3)(5y-3)))y((y(5y-3))⋅4)
Step 4.4.2.2
Cancel the common factor.
y((y+2)((5y+3)(5y-3)))y((y(5y-3))⋅4)
Step 4.4.2.3
Rewrite the expression.
(y+2)((5y+3)(5y-3))(y(5y-3))⋅4
(y+2)((5y+3)(5y-3))(y(5y-3))⋅4
(y+2)((5y+3)(5y-3))(y(5y-3))⋅4
Step 4.5
Cancel the common factor of 5y-3.
Step 4.5.1
Cancel the common factor.
(y+2)((5y+3)(5y-3))y(5y-3)⋅4
Step 4.5.2
Rewrite the expression.
(y+2)(5y+3)(y)⋅4
(y+2)(5y+3)(y)⋅4
Step 4.6
Move 4 to the left of y.
(y+2)(5y+3)4y
(y+2)(5y+3)4y