Basic Math Examples

Solve for ? sin(pi/2+theta)=-tan(theta)
sin(π2+θ)=-tan(θ)sin(π2+θ)=tan(θ)
Step 1
Use the sum formula for sine to simplify the expression. The formula states that sin(A+B)=sin(A)cos(B)+cos(A)sin(B)sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
sin(π2)cos(θ)+cos(π2)sin(θ)=-tan(θ)sin(π2)cos(θ)+cos(π2)sin(θ)=tan(θ)
Step 2
Simplify the left side.
Tap for more steps...
Step 2.1
Simplify sin(π2)cos(θ)+cos(π2)sin(θ)sin(π2)cos(θ)+cos(π2)sin(θ).
Tap for more steps...
Step 2.1.1
Simplify each term.
Tap for more steps...
Step 2.1.1.1
The exact value of sin(π2)sin(π2) is 11.
1cos(θ)+cos(π2)sin(θ)=-tan(θ)1cos(θ)+cos(π2)sin(θ)=tan(θ)
Step 2.1.1.2
Multiply cos(θ)cos(θ) by 11.
cos(θ)+cos(π2)sin(θ)=-tan(θ)cos(θ)+cos(π2)sin(θ)=tan(θ)
Step 2.1.1.3
The exact value of cos(π2)cos(π2) is 00.
cos(θ)+0sin(θ)=-tan(θ)cos(θ)+0sin(θ)=tan(θ)
Step 2.1.1.4
Multiply 00 by sin(θ)sin(θ).
cos(θ)+0=-tan(θ)cos(θ)+0=tan(θ)
cos(θ)+0=-tan(θ)cos(θ)+0=tan(θ)
Step 2.1.2
Add cos(θ)cos(θ) and 00.
cos(θ)=-tan(θ)cos(θ)=tan(θ)
cos(θ)=-tan(θ)cos(θ)=tan(θ)
cos(θ)=-tan(θ)cos(θ)=tan(θ)
Step 3
Simplify the right side.
Tap for more steps...
Step 3.1
Rewrite tan(θ)tan(θ) in terms of sines and cosines.
cos(θ)=-sin(θ)cos(θ)cos(θ)=sin(θ)cos(θ)
cos(θ)=-sin(θ)cos(θ)cos(θ)=sin(θ)cos(θ)
Step 4
Multiply both sides of the equation by cos(θ)cos(θ).
cos(θ)cos(θ)=cos(θ)(-sin(θ)cos(θ))cos(θ)cos(θ)=cos(θ)(sin(θ)cos(θ))
Step 5
Multiply cos(θ)cos(θ)cos(θ)cos(θ).
Tap for more steps...
Step 5.1
Raise cos(θ)cos(θ) to the power of 11.
cos1(θ)cos(θ)=cos(θ)(-sin(θ)cos(θ))cos1(θ)cos(θ)=cos(θ)(sin(θ)cos(θ))
Step 5.2
Raise cos(θ)cos(θ) to the power of 11.
cos1(θ)cos1(θ)=cos(θ)(-sin(θ)cos(θ))cos1(θ)cos1(θ)=cos(θ)(sin(θ)cos(θ))
Step 5.3
Use the power rule aman=am+naman=am+n to combine exponents.
cos(θ)1+1=cos(θ)(-sin(θ)cos(θ))cos(θ)1+1=cos(θ)(sin(θ)cos(θ))
Step 5.4
Add 11 and 11.
cos2(θ)=cos(θ)(-sin(θ)cos(θ))cos2(θ)=cos(θ)(sin(θ)cos(θ))
cos2(θ)=cos(θ)(-sin(θ)cos(θ))cos2(θ)=cos(θ)(sin(θ)cos(θ))
Step 6
Rewrite using the commutative property of multiplication.
cos2(θ)=-cos(θ)sin(θ)cos(θ)cos2(θ)=cos(θ)sin(θ)cos(θ)
Step 7
Cancel the common factor of cos(θ)cos(θ).
Tap for more steps...
Step 7.1
Factor cos(θ)cos(θ) out of -cos(θ)cos(θ).
cos2(θ)=cos(θ)-1sin(θ)cos(θ)cos2(θ)=cos(θ)1sin(θ)cos(θ)
Step 7.2
Cancel the common factor.
cos2(θ)=cos(θ)-1sin(θ)cos(θ)
Step 7.3
Rewrite the expression.
cos2(θ)=-sin(θ)
cos2(θ)=-sin(θ)
Step 8
Add sin(θ) to both sides of the equation.
cos2(θ)+sin(θ)=0
Step 9
Replace cos2(θ) with 1-sin2(θ).
(1-sin2(θ))+sin(θ)=0
Step 10
Solve for θ.
Tap for more steps...
Step 10.1
Substitute u for sin(θ).
1-(u)2+u=0
Step 10.2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 10.3
Substitute the values a=-1, b=1, and c=1 into the quadratic formula and solve for u.
-1±12-4(-11)2-1
Step 10.4
Simplify.
Tap for more steps...
Step 10.4.1
Simplify the numerator.
Tap for more steps...
Step 10.4.1.1
One to any power is one.
u=-1±1-4-112-1
Step 10.4.1.2
Multiply -4-11.
Tap for more steps...
Step 10.4.1.2.1
Multiply -4 by -1.
u=-1±1+412-1
Step 10.4.1.2.2
Multiply 4 by 1.
u=-1±1+42-1
u=-1±1+42-1
Step 10.4.1.3
Add 1 and 4.
u=-1±52-1
u=-1±52-1
Step 10.4.2
Multiply 2 by -1.
u=-1±5-2
Step 10.4.3
Simplify -1±5-2.
u=1±52
u=1±52
Step 10.5
The final answer is the combination of both solutions.
u=1+52,1-52
Step 10.6
Substitute sin(θ) for u.
sin(θ)=1+52,1-52
Step 10.7
Set up each of the solutions to solve for θ.
sin(θ)=1+52
sin(θ)=1-52
Step 10.8
Solve for θ in sin(θ)=1+52.
Tap for more steps...
Step 10.8.1
The range of sine is -1y1. Since 1+52 does not fall in this range, there is no solution.
No solution
No solution
Step 10.9
Solve for θ in sin(θ)=1-52.
Tap for more steps...
Step 10.9.1
Take the inverse sine of both sides of the equation to extract θ from inside the sine.
θ=arcsin(1-52)
Step 10.9.2
Simplify the right side.
Tap for more steps...
Step 10.9.2.1
Evaluate arcsin(1-52).
θ=-0.66623943
θ=-0.66623943
Step 10.9.3
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from π to find the solution in the second quadrant.
θ=(3.14159265)+0.66623943
Step 10.9.4
Solve for θ.
Tap for more steps...
Step 10.9.4.1
Remove parentheses.
θ=3.14159265+0.66623943
Step 10.9.4.2
Remove parentheses.
θ=(3.14159265)+0.66623943
Step 10.9.4.3
Add 3.14159265 and 0.66623943.
θ=3.80783208
θ=3.80783208
Step 10.9.5
Find the period of sin(θ).
Tap for more steps...
Step 10.9.5.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 10.9.5.2
Replace b with 1 in the formula for period.
2π|1|
Step 10.9.5.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
2π1
Step 10.9.5.4
Divide 2π by 1.
2π
2π
Step 10.9.6
Add 2π to every negative angle to get positive angles.
Tap for more steps...
Step 10.9.6.1
Add 2π to -0.66623943 to find the positive angle.
-0.66623943+2π
Step 10.9.6.2
Subtract 0.66623943 from 2π.
5.61694587
Step 10.9.6.3
List the new angles.
θ=5.61694587
θ=5.61694587
Step 10.9.7
The period of the sin(θ) function is 2π so values will repeat every 2π radians in both directions.
θ=3.80783208+2πn,5.61694587+2πn, for any integer n
θ=3.80783208+2πn,5.61694587+2πn, for any integer n
Step 10.10
List all of the solutions.
θ=3.80783208+2πn,5.61694587+2πn, for any integer n
θ=3.80783208+2πn,5.61694587+2πn, for any integer n
 [x2  12  π  xdx ]