Basic Math Examples

Solve for a 2a-1=4(a+1)+7a+5
2a-1=4(a+1)+7a+52a1=4(a+1)+7a+5
Step 1
Since a is on the right side of the equation, switch the sides so it is on the left side of the equation.
4(a+1)+7a+5=2a-1
Step 2
Simplify 4(a+1)+7a+5.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Apply the distributive property.
4a+41+7a+5=2a-1
Step 2.1.2
Multiply 4 by 1.
4a+4+7a+5=2a-1
4a+4+7a+5=2a-1
Step 2.2
Simplify by adding terms.
Tap for more steps...
Step 2.2.1
Add 4a and 7a.
11a+4+5=2a-1
Step 2.2.2
Add 4 and 5.
11a+9=2a-1
11a+9=2a-1
11a+9=2a-1
Step 3
Move all terms containing a to the left side of the equation.
Tap for more steps...
Step 3.1
Subtract 2a from both sides of the equation.
11a+9-2a=-1
Step 3.2
Subtract 2a from 11a.
9a+9=-1
9a+9=-1
Step 4
Move all terms not containing a to the right side of the equation.
Tap for more steps...
Step 4.1
Subtract 9 from both sides of the equation.
9a=-1-9
Step 4.2
Subtract 9 from -1.
9a=-10
9a=-10
Step 5
Divide each term in 9a=-10 by 9 and simplify.
Tap for more steps...
Step 5.1
Divide each term in 9a=-10 by 9.
9a9=-109
Step 5.2
Simplify the left side.
Tap for more steps...
Step 5.2.1
Cancel the common factor of 9.
Tap for more steps...
Step 5.2.1.1
Cancel the common factor.
9a9=-109
Step 5.2.1.2
Divide a by 1.
a=-109
a=-109
a=-109
Step 5.3
Simplify the right side.
Tap for more steps...
Step 5.3.1
Move the negative in front of the fraction.
a=-109
a=-109
a=-109
Step 6
The result can be shown in multiple forms.
Exact Form:
a=-109
Decimal Form:
a=-1.1
Mixed Number Form:
a=-119
 [x2  12  π  xdx ]