Basic Math Examples

Solve for y 6400=2^x
6400=2x6400=2x
Step 1
Since xx is on the right side of the equation, switch the sides so it is on the left side of the equation.
2x=64002x=6400
Step 2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2x)=ln(6400)ln(2x)=ln(6400)
Step 3
Expand ln(2x)ln(2x) by moving xx outside the logarithm.
xln(2)=ln(6400)xln(2)=ln(6400)
Step 4
Divide each term in xln(2)=ln(6400)xln(2)=ln(6400) by ln(2)ln(2) and simplify.
Tap for more steps...
Step 4.1
Divide each term in xln(2)=ln(6400)xln(2)=ln(6400) by ln(2)ln(2).
xln(2)ln(2)=ln(6400)ln(2)xln(2)ln(2)=ln(6400)ln(2)
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of ln(2)ln(2).
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
xln(2)ln(2)=ln(6400)ln(2)xln(2)ln(2)=ln(6400)ln(2)
Step 4.2.1.2
Divide xx by 11.
x=ln(6400)ln(2)x=ln(6400)ln(2)
x=ln(6400)ln(2)x=ln(6400)ln(2)
x=ln(6400)ln(2)x=ln(6400)ln(2)
x=ln(6400)ln(2)x=ln(6400)ln(2)
Step 5
The result can be shown in multiple forms.
Exact Form:
x=ln(6400)ln(2)x=ln(6400)ln(2)
Decimal Form:
x=12.64385618x=12.64385618
 [x2  12  π  xdx ]  x2  12  π  xdx