Basic Math Examples

Simplify (a+b)^2-(a-b)^2
(a+b)2-(a-b)2(a+b)2(ab)2
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite (a+b)2(a+b)2 as (a+b)(a+b)(a+b)(a+b).
(a+b)(a+b)-(a-b)2(a+b)(a+b)(ab)2
Step 1.2
Expand (a+b)(a+b)(a+b)(a+b) using the FOIL Method.
Tap for more steps...
Step 1.2.1
Apply the distributive property.
a(a+b)+b(a+b)-(a-b)2a(a+b)+b(a+b)(ab)2
Step 1.2.2
Apply the distributive property.
aa+ab+b(a+b)-(a-b)2aa+ab+b(a+b)(ab)2
Step 1.2.3
Apply the distributive property.
aa+ab+ba+bb-(a-b)2aa+ab+ba+bb(ab)2
aa+ab+ba+bb-(a-b)2aa+ab+ba+bb(ab)2
Step 1.3
Simplify and combine like terms.
Tap for more steps...
Step 1.3.1
Simplify each term.
Tap for more steps...
Step 1.3.1.1
Multiply aa by aa.
a2+ab+ba+bb-(a-b)2a2+ab+ba+bb(ab)2
Step 1.3.1.2
Multiply bb by bb.
a2+ab+ba+b2-(a-b)2a2+ab+ba+b2(ab)2
a2+ab+ba+b2-(a-b)2a2+ab+ba+b2(ab)2
Step 1.3.2
Add abab and baba.
Tap for more steps...
Step 1.3.2.1
Reorder bb and aa.
a2+ab+ab+b2-(a-b)2a2+ab+ab+b2(ab)2
Step 1.3.2.2
Add abab and abab.
a2+2ab+b2-(a-b)2a2+2ab+b2(ab)2
a2+2ab+b2-(a-b)2a2+2ab+b2(ab)2
a2+2ab+b2-(a-b)2a2+2ab+b2(ab)2
Step 1.4
Rewrite (a-b)2(ab)2 as (a-b)(a-b)(ab)(ab).
a2+2ab+b2-((a-b)(a-b))a2+2ab+b2((ab)(ab))
Step 1.5
Expand (a-b)(a-b)(ab)(ab) using the FOIL Method.
Tap for more steps...
Step 1.5.1
Apply the distributive property.
a2+2ab+b2-(a(a-b)-b(a-b))a2+2ab+b2(a(ab)b(ab))
Step 1.5.2
Apply the distributive property.
a2+2ab+b2-(aa+a(-b)-b(a-b))a2+2ab+b2(aa+a(b)b(ab))
Step 1.5.3
Apply the distributive property.
a2+2ab+b2-(aa+a(-b)-ba-b(-b))a2+2ab+b2(aa+a(b)bab(b))
a2+2ab+b2-(aa+a(-b)-ba-b(-b))a2+2ab+b2(aa+a(b)bab(b))
Step 1.6
Simplify and combine like terms.
Tap for more steps...
Step 1.6.1
Simplify each term.
Tap for more steps...
Step 1.6.1.1
Multiply aa by aa.
a2+2ab+b2-(a2+a(-b)-ba-b(-b))a2+2ab+b2(a2+a(b)bab(b))
Step 1.6.1.2
Rewrite using the commutative property of multiplication.
a2+2ab+b2-(a2-ab-ba-b(-b))a2+2ab+b2(a2abbab(b))
Step 1.6.1.3
Rewrite using the commutative property of multiplication.
a2+2ab+b2-(a2-ab-ba-1-1bb)a2+2ab+b2(a2abba11bb)
Step 1.6.1.4
Multiply bb by bb by adding the exponents.
Tap for more steps...
Step 1.6.1.4.1
Move bb.
a2+2ab+b2-(a2-ab-ba-1-1(bb))a2+2ab+b2(a2abba11(bb))
Step 1.6.1.4.2
Multiply bb by bb.
a2+2ab+b2-(a2-ab-ba-1-1b2)a2+2ab+b2(a2abba11b2)
a2+2ab+b2-(a2-ab-ba-1-1b2)a2+2ab+b2(a2abba11b2)
Step 1.6.1.5
Multiply -11 by -11.
a2+2ab+b2-(a2-ab-ba+1b2)a2+2ab+b2(a2abba+1b2)
Step 1.6.1.6
Multiply b2b2 by 11.
a2+2ab+b2-(a2-ab-ba+b2)a2+2ab+b2(a2abba+b2)
a2+2ab+b2-(a2-ab-ba+b2)a2+2ab+b2(a2abba+b2)
Step 1.6.2
Subtract baba from -abab.
Tap for more steps...
Step 1.6.2.1
Move bb.
a2+2ab+b2-(a2-ab-1ab+b2)a2+2ab+b2(a2ab1ab+b2)
Step 1.6.2.2
Subtract abab from -abab.
a2+2ab+b2-(a2-2ab+b2)a2+2ab+b2(a22ab+b2)
a2+2ab+b2-(a2-2ab+b2)a2+2ab+b2(a22ab+b2)
a2+2ab+b2-(a2-2ab+b2)a2+2ab+b2(a22ab+b2)
Step 1.7
Apply the distributive property.
a2+2ab+b2-a2-(-2ab)-b2a2+2ab+b2a2(2ab)b2
Step 1.8
Multiply -22 by -11.
a2+2ab+b2-a2+2ab-b2a2+2ab+b2a2+2abb2
a2+2ab+b2-a2+2ab-b2a2+2ab+b2a2+2abb2
Step 2
Simplify by adding terms.
Tap for more steps...
Step 2.1
Combine the opposite terms in a2+2ab+b2-a2+2ab-b2a2+2ab+b2a2+2abb2.
Tap for more steps...
Step 2.1.1
Subtract a2a2 from a2a2.
2ab+b2+0+2ab-b22ab+b2+0+2abb2
Step 2.1.2
Add 2ab+b22ab+b2 and 00.
2ab+b2+2ab-b22ab+b2+2abb2
Step 2.1.3
Subtract b2b2 from b2b2.
2ab+2ab+02ab+2ab+0
Step 2.1.4
Add 2ab+2ab2ab+2ab and 00.
2ab+2ab2ab+2ab
2ab+2ab2ab+2ab
Step 2.2
Add 2ab2ab and 2ab2ab.
4ab4ab
4ab4ab
 [x2  12  π  xdx ]  x2  12  π  xdx