Enter a problem...
Algebra Examples
Step 1
Step 1.1
Regroup terms.
Step 1.2
Factor out of .
Step 1.2.1
Factor out of .
Step 1.2.2
Multiply by .
Step 1.2.3
Factor out of .
Step 1.3
Rewrite as .
Step 1.4
Since both terms are perfect cubes, factor using the sum of cubes formula, where and .
Step 1.5
Factor.
Step 1.5.1
Simplify.
Step 1.5.1.1
Multiply by .
Step 1.5.1.2
One to any power is one.
Step 1.5.2
Remove unnecessary parentheses.
Step 1.6
Factor using the rational roots test.
Step 1.6.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 1.6.2
Find every combination of . These are the possible roots of the polynomial function.
Step 1.6.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 1.6.3.1
Substitute into the polynomial.
Step 1.6.3.2
Raise to the power of .
Step 1.6.3.3
Multiply by .
Step 1.6.3.4
Raise to the power of .
Step 1.6.3.5
Subtract from .
Step 1.6.3.6
Add and .
Step 1.6.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 1.6.5
Divide by .
Step 1.6.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | - | + | + | + | + |
Step 1.6.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||||
+ | - | + | + | + | + |
Step 1.6.5.3
Multiply the new quotient term by the divisor.
- | |||||||||||||
+ | - | + | + | + | + | ||||||||
- | - |
Step 1.6.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||||
+ | - | + | + | + | + | ||||||||
+ | + |
Step 1.6.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ |
Step 1.6.5.6
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + |
Step 1.6.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | ||||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + |
Step 1.6.5.8
Multiply the new quotient term by the divisor.
- | + | ||||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
+ | + |
Step 1.6.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | ||||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - |
Step 1.6.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | ||||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- |
Step 1.6.5.11
Pull the next terms from the original dividend down into the current dividend.
- | + | ||||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | + |
Step 1.6.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | - | |||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | + |
Step 1.6.5.13
Multiply the new quotient term by the divisor.
- | + | - | |||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | + | ||||||||||||
- | - |
Step 1.6.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | - | |||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + |
Step 1.6.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | - | |||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ |
Step 1.6.5.16
Pull the next terms from the original dividend down into the current dividend.
- | + | - | |||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | + |
Step 1.6.5.17
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | - | + | ||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | + |
Step 1.6.5.18
Multiply the new quotient term by the divisor.
- | + | - | + | ||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
+ | + |
Step 1.6.5.19
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | - | + | ||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - |
Step 1.6.5.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | - | + | ||||||||||
+ | - | + | + | + | + | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
Step 1.6.5.21
Since the remander is , the final answer is the quotient.
Step 1.6.6
Write as a set of factors.
Step 1.7
Factor out of .
Step 1.7.1
Factor out of .
Step 1.7.2
Factor out of .
Step 1.8
Apply the distributive property.
Step 1.9
Simplify.
Step 1.9.1
Multiply by by adding the exponents.
Step 1.9.1.1
Use the power rule to combine exponents.
Step 1.9.1.2
Add and .
Step 1.9.2
Rewrite using the commutative property of multiplication.
Step 1.9.3
Multiply by .
Step 1.10
Multiply by by adding the exponents.
Step 1.10.1
Move .
Step 1.10.2
Multiply by .
Step 1.10.2.1
Raise to the power of .
Step 1.10.2.2
Use the power rule to combine exponents.
Step 1.10.3
Add and .
Step 1.11
Subtract from .
Step 1.12
Add and .
Step 2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3
Step 3.1
Set equal to .
Step 3.2
Subtract from both sides of the equation.
Step 4
Step 4.1
Set equal to .
Step 4.2
Solve for .
Step 4.2.1
Factor the left side of the equation.
Step 4.2.1.1
Regroup terms.
Step 4.2.1.2
Factor out of .
Step 4.2.1.2.1
Factor out of .
Step 4.2.1.2.2
Factor out of .
Step 4.2.1.2.3
Factor out of .
Step 4.2.1.3
Rewrite as .
Step 4.2.1.4
Let . Substitute for all occurrences of .
Step 4.2.1.5
Factor using the AC method.
Step 4.2.1.5.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 4.2.1.5.2
Write the factored form using these integers.
Step 4.2.1.6
Replace all occurrences of with .
Step 4.2.1.7
Factor out of .
Step 4.2.1.7.1
Factor out of .
Step 4.2.1.7.2
Factor out of .
Step 4.2.1.8
Let . Substitute for all occurrences of .
Step 4.2.1.9
Factor using the perfect square rule.
Step 4.2.1.9.1
Rearrange terms.
Step 4.2.1.9.2
Rewrite as .
Step 4.2.1.9.3
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 4.2.1.9.4
Rewrite the polynomial.
Step 4.2.1.9.5
Factor using the perfect square trinomial rule , where and .
Step 4.2.1.10
Replace all occurrences of with .
Step 4.2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.2.3
Set equal to and solve for .
Step 4.2.3.1
Set equal to .
Step 4.2.3.2
Solve for .
Step 4.2.3.2.1
Subtract from both sides of the equation.
Step 4.2.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4.2.3.2.3
Rewrite as .
Step 4.2.3.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.2.3.2.4.1
First, use the positive value of the to find the first solution.
Step 4.2.3.2.4.2
Next, use the negative value of the to find the second solution.
Step 4.2.3.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.2.4
Set equal to and solve for .
Step 4.2.4.1
Set equal to .
Step 4.2.4.2
Solve for .
Step 4.2.4.2.1
Set the equal to .
Step 4.2.4.2.2
Add to both sides of the equation.
Step 4.2.5
The final solution is all the values that make true.
Step 5
The final solution is all the values that make true.
Step 6