Enter a problem...
Algebra Examples
Step 1
Step 1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 1.2
Remove parentheses.
Step 1.3
The LCM of one and any expression is the expression.
Step 2
Step 2.1
Multiply each term in by .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Apply the distributive property.
Step 2.2.1.2
Rewrite using the commutative property of multiplication.
Step 2.2.1.3
Multiply by .
Step 2.2.1.4
Simplify each term.
Step 2.2.1.4.1
Multiply by by adding the exponents.
Step 2.2.1.4.1.1
Move .
Step 2.2.1.4.1.2
Multiply by .
Step 2.2.1.4.2
Multiply by .
Step 2.2.1.5
Cancel the common factor of .
Step 2.2.1.5.1
Move the leading negative in into the numerator.
Step 2.2.1.5.2
Cancel the common factor.
Step 2.2.1.5.3
Rewrite the expression.
Step 2.3
Simplify the right side.
Step 2.3.1
Apply the distributive property.
Step 2.3.2
Multiply.
Step 2.3.2.1
Multiply by .
Step 2.3.2.2
Multiply by .
Step 3
Step 3.1
Move all terms containing to the left side of the equation.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Subtract from .
Step 3.2
Add to both sides of the equation.
Step 3.3
Add and .
Step 3.4
Factor by grouping.
Step 3.4.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 3.4.1.1
Factor out of .
Step 3.4.1.2
Rewrite as plus
Step 3.4.1.3
Apply the distributive property.
Step 3.4.2
Factor out the greatest common factor from each group.
Step 3.4.2.1
Group the first two terms and the last two terms.
Step 3.4.2.2
Factor out the greatest common factor (GCF) from each group.
Step 3.4.3
Factor the polynomial by factoring out the greatest common factor, .
Step 3.5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.6
Set equal to and solve for .
Step 3.6.1
Set equal to .
Step 3.6.2
Solve for .
Step 3.6.2.1
Add to both sides of the equation.
Step 3.6.2.2
Divide each term in by and simplify.
Step 3.6.2.2.1
Divide each term in by .
Step 3.6.2.2.2
Simplify the left side.
Step 3.6.2.2.2.1
Cancel the common factor of .
Step 3.6.2.2.2.1.1
Cancel the common factor.
Step 3.6.2.2.2.1.2
Divide by .
Step 3.7
Set equal to and solve for .
Step 3.7.1
Set equal to .
Step 3.7.2
Solve for .
Step 3.7.2.1
Add to both sides of the equation.
Step 3.7.2.2
Divide each term in by and simplify.
Step 3.7.2.2.1
Divide each term in by .
Step 3.7.2.2.2
Simplify the left side.
Step 3.7.2.2.2.1
Cancel the common factor of .
Step 3.7.2.2.2.1.1
Cancel the common factor.
Step 3.7.2.2.2.1.2
Divide by .
Step 3.8
The final solution is all the values that make true.
Step 4
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Mixed Number Form: