Algebra Examples

Divide Using Long Polynomial Division (x^4+2x^2-x+5)÷(x^2-x+1)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
-+++-+
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
-+++-+
Step 3
Multiply the new quotient term by the divisor.
-+++-+
+-+
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
-+++-+
-+-
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+++-+
-+-
++
Step 6
Pull the next terms from the original dividend down into the current dividend.
-+++-+
-+-
++-
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
+
-+++-+
-+-
++-
Step 8
Multiply the new quotient term by the divisor.
+
-+++-+
-+-
++-
+-+
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
+
-+++-+
-+-
++-
-+-
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
-+++-+
-+-
++-
-+-
+-
Step 11
Pull the next terms from the original dividend down into the current dividend.
+
-+++-+
-+-
++-
-+-
+-+
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
++
-+++-+
-+-
++-
-+-
+-+
Step 13
Multiply the new quotient term by the divisor.
++
-+++-+
-+-
++-
-+-
+-+
+-+
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
++
-+++-+
-+-
++-
-+-
+-+
-+-
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++
-+++-+
-+-
++-
-+-
+-+
-+-
+
Step 16
The final answer is the quotient plus the remainder over the divisor.