Algebra Examples

Divide Using Long Polynomial Division (8x^4-18x^3+9x^2+4x+2)÷(x^2-2x+1)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
-+-+++
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
-+-+++
Step 3
Multiply the new quotient term by the divisor.
-+-+++
+-+
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
-+-+++
-+-
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+-+++
-+-
-+
Step 6
Pull the next terms from the original dividend down into the current dividend.
-+-+++
-+-
-++
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
-
-+-+++
-+-
-++
Step 8
Multiply the new quotient term by the divisor.
-
-+-+++
-+-
-++
-+-
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
-
-+-+++
-+-
-++
+-+
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
-+-+++
-+-
-++
+-+
-+
Step 11
Pull the next terms from the original dividend down into the current dividend.
-
-+-+++
-+-
-++
+-+
-++
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
--
-+-+++
-+-
-++
+-+
-++
Step 13
Multiply the new quotient term by the divisor.
--
-+-+++
-+-
-++
+-+
-++
-+-
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
--
-+-+++
-+-
-++
+-+
-++
+-+
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--
-+-+++
-+-
-++
+-+
-++
+-+
+
Step 16
The final answer is the quotient plus the remainder over the divisor.