Algebra Examples

Solve the Inequality for x (x^2-4)/(x^2+36)>=0
Step 1
Find all the values where the expression switches from negative to positive by setting each factor equal to and solving.
Step 2
Add to both sides of the equation.
Step 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4
Simplify .
Tap for more steps...
Step 4.1
Rewrite as .
Step 4.2
Pull terms out from under the radical, assuming positive real numbers.
Step 5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 5.1
First, use the positive value of the to find the first solution.
Step 5.2
Next, use the negative value of the to find the second solution.
Step 5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 6
Subtract from both sides of the equation.
Step 7
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 8
Simplify .
Tap for more steps...
Step 8.1
Rewrite as .
Step 8.2
Rewrite as .
Step 8.3
Rewrite as .
Step 8.4
Rewrite as .
Step 8.5
Pull terms out from under the radical, assuming positive real numbers.
Step 8.6
Move to the left of .
Step 9
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 9.1
First, use the positive value of the to find the first solution.
Step 9.2
Next, use the negative value of the to find the second solution.
Step 9.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 10
Solve for each factor to find the values where the absolute value expression goes from negative to positive.
Step 11
Consolidate the solutions.
Step 12
Use each root to create test intervals.
Step 13
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Step 13.1
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 13.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 13.1.2
Replace with in the original inequality.
Step 13.1.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 13.2
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 13.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 13.2.2
Replace with in the original inequality.
Step 13.2.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 13.3
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 13.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 13.3.2
Replace with in the original inequality.
Step 13.3.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 13.4
Compare the intervals to determine which ones satisfy the original inequality.
True
False
True
True
False
True
Step 14
The solution consists of all of the true intervals.
or
Step 15
The result can be shown in multiple forms.
Inequality Form:
Interval Notation:
Step 16