삼각법 예제

Résoudre pour y (-( 2)/2)^2+y^2=1 의 제곱근
단계 1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
지수 법칙 을 이용하여 지수를 분배합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
에 곱의 미분 법칙을 적용합니다.
단계 1.1.2
에 곱의 미분 법칙을 적용합니다.
단계 1.2
승 합니다.
단계 1.3
을 곱합니다.
단계 1.4
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 1.4.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 1.4.3
을 묶습니다.
단계 1.4.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.4.1
공약수로 약분합니다.
단계 1.4.4.2
수식을 다시 씁니다.
단계 1.4.5
지수값을 계산합니다.
단계 1.5
승 합니다.
단계 1.6
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.6.1
에서 를 인수분해합니다.
단계 1.6.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.6.2.1
에서 를 인수분해합니다.
단계 1.6.2.2
공약수로 약분합니다.
단계 1.6.2.3
수식을 다시 씁니다.
단계 2
를 포함하지 않은 모든 항을 방정식의 우변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
방정식의 양변에서 를 뺍니다.
단계 2.2
을(를) 공통분모가 있는 분수로 표현합니다.
단계 2.3
공통분모를 가진 분자끼리 묶습니다.
단계 2.4
에서 을 뺍니다.
단계 3
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 4
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
로 바꿔 씁니다.
단계 4.2
의 거듭제곱근은 입니다.
단계 4.3
을 곱합니다.
단계 4.4
분모를 결합하고 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.1
을 곱합니다.
단계 4.4.2
승 합니다.
단계 4.4.3
승 합니다.
단계 4.4.4
지수 법칙 을 이용하여 지수를 합칩니다.
단계 4.4.5
에 더합니다.
단계 4.4.6
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.6.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 4.4.6.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 4.4.6.3
을 묶습니다.
단계 4.4.6.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.6.4.1
공약수로 약분합니다.
단계 4.4.6.4.2
수식을 다시 씁니다.
단계 4.4.6.5
지수값을 계산합니다.
단계 5
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 5.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 5.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 6
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: