문제를 입력하십시오...
삼각법 예제
단계 1
단계 1.1
x절편을 구하려면 에 을 대입하고 에 대해 식을 풉니다.
단계 1.2
식을 풉니다.
단계 1.2.1
로 방정식을 다시 씁니다.
단계 1.2.2
방정식의 양변에 를 더합니다.
단계 1.2.3
의 각 항을 로 나누고 식을 간단히 합니다.
단계 1.2.3.1
의 각 항을 로 나눕니다.
단계 1.2.3.2
좌변을 간단히 합니다.
단계 1.2.3.2.1
의 공약수로 약분합니다.
단계 1.2.3.2.1.1
공약수로 약분합니다.
단계 1.2.3.2.1.2
을 로 나눕니다.
단계 1.2.3.3
우변을 간단히 합니다.
단계 1.2.3.3.1
및 의 공약수로 약분합니다.
단계 1.2.3.3.1.1
에서 를 인수분해합니다.
단계 1.2.3.3.1.2
공약수로 약분합니다.
단계 1.2.3.3.1.2.1
에서 를 인수분해합니다.
단계 1.2.3.3.1.2.2
공약수로 약분합니다.
단계 1.2.3.3.1.2.3
수식을 다시 씁니다.
단계 1.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 1.2.5
을 간단히 합니다.
단계 1.2.5.1
을 로 바꿔 씁니다.
단계 1.2.5.2
의 거듭제곱근은 입니다.
단계 1.2.5.3
에 을 곱합니다.
단계 1.2.5.4
분모를 결합하고 간단히 합니다.
단계 1.2.5.4.1
에 을 곱합니다.
단계 1.2.5.4.2
를 승 합니다.
단계 1.2.5.4.3
를 승 합니다.
단계 1.2.5.4.4
지수 법칙 을 이용하여 지수를 합칩니다.
단계 1.2.5.4.5
를 에 더합니다.
단계 1.2.5.4.6
을 로 바꿔 씁니다.
단계 1.2.5.4.6.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 1.2.5.4.6.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 1.2.5.4.6.3
와 을 묶습니다.
단계 1.2.5.4.6.4
의 공약수로 약분합니다.
단계 1.2.5.4.6.4.1
공약수로 약분합니다.
단계 1.2.5.4.6.4.2
수식을 다시 씁니다.
단계 1.2.5.4.6.5
지수값을 계산합니다.
단계 1.2.6
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 1.2.6.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 1.2.6.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 1.2.6.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 1.2.7
각 식에 대하여 를 구합니다.
단계 1.2.8
의 에 대해 풉니다.
단계 1.2.8.1
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 1.2.8.2
우변을 간단히 합니다.
단계 1.2.8.2.1
의 정확한 값은 입니다.
단계 1.2.8.3
코사인 함수는 제1사분면과 제4사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제4사분면에 있는 해를 구합니다.
단계 1.2.8.4
을 간단히 합니다.
단계 1.2.8.4.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.2.8.4.2
분수를 통분합니다.
단계 1.2.8.4.2.1
와 을 묶습니다.
단계 1.2.8.4.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 1.2.8.4.3
분자를 간단히 합니다.
단계 1.2.8.4.3.1
에 을 곱합니다.
단계 1.2.8.4.3.2
에서 을 뺍니다.
단계 1.2.8.5
주기를 구합니다.
단계 1.2.8.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 1.2.8.5.2
주기 공식에서 에 을 대입합니다.
단계 1.2.8.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 1.2.8.5.4
을 로 나눕니다.
단계 1.2.8.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 1.2.9
의 에 대해 풉니다.
단계 1.2.9.1
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 1.2.9.2
우변을 간단히 합니다.
단계 1.2.9.2.1
의 정확한 값은 입니다.
단계 1.2.9.3
코사인 함수는 제2사분면과 제3사분면에서 음의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제3사분면에 있는 해를 구합니다.
단계 1.2.9.4
을 간단히 합니다.
단계 1.2.9.4.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.2.9.4.2
분수를 통분합니다.
단계 1.2.9.4.2.1
와 을 묶습니다.
단계 1.2.9.4.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 1.2.9.4.3
분자를 간단히 합니다.
단계 1.2.9.4.3.1
에 을 곱합니다.
단계 1.2.9.4.3.2
에서 을 뺍니다.
단계 1.2.9.5
주기를 구합니다.
단계 1.2.9.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 1.2.9.5.2
주기 공식에서 에 을 대입합니다.
단계 1.2.9.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 1.2.9.5.4
을 로 나눕니다.
단계 1.2.9.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 1.2.10
모든 해를 나열합니다.
임의의 정수 에 대해
단계 1.2.11
답안을 하나로 합합니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 1.3
점 형태의 x절편입니다.
x절편: 임의의 정수 에 대해
x절편: 임의의 정수 에 대해
단계 2
단계 2.1
y절편을 구하려면 에 을 대입하고 에 대해 식을 풉니다.
단계 2.2
식을 풉니다.
단계 2.2.1
괄호를 제거합니다.
단계 2.2.2
을 간단히 합니다.
단계 2.2.2.1
각 항을 간단히 합니다.
단계 2.2.2.1.1
의 정확한 값은 입니다.
단계 2.2.2.1.2
1의 모든 거듭제곱은 1입니다.
단계 2.2.2.1.3
에 을 곱합니다.
단계 2.2.2.2
에서 을 뺍니다.
단계 2.3
점 형태의 y절편입니다.
y절편:
y절편:
단계 3
교집합을 나열합니다.
x절편: 임의의 정수 에 대해
y절편:
단계 4