삼각법 예제

Résoudre pour x cos(x)^2+cos(x)-2=0
단계 1
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로 정의합니다. 식에 나타나는 모든 로 바꿉니다.
단계 1.2
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 1.2.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 1.3
를 모두 로 바꿉니다.
단계 2
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 3
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
와 같다고 둡니다.
단계 3.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
방정식의 양변에 를 더합니다.
단계 3.2.2
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 3.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.3.1
의 정확한 값은 입니다.
단계 3.2.4
코사인 함수는 제1사분면과 제4사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제4사분면에 있는 해를 구합니다.
단계 3.2.5
에서 을 뺍니다.
단계 3.2.6
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.6.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 3.2.6.2
주기 공식에서 을 대입합니다.
단계 3.2.6.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 3.2.6.4
로 나눕니다.
단계 3.2.7
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 4
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
와 같다고 둡니다.
단계 4.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
방정식의 양변에서 를 뺍니다.
단계 4.2.2
코사인의 치역은 입니다. 가 이 영역에 속하지 않으므로 해는 존재하지 않습니다.
해 없음
해 없음
해 없음
단계 5
을 참으로 만드는 모든 값이 최종 해가 됩니다.
임의의 정수 에 대해
단계 6
답안을 하나로 합합니다.
임의의 정수 에 대해