삼각법 예제

Résoudre pour x sin(2x)+ 2cos(x)=0 의 제곱근
단계 1
방정식의 양변에서 를 뺍니다.
단계 2
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 3
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1.2.1
공약수로 약분합니다.
단계 3.2.1.1.2.2
수식을 다시 씁니다.
단계 3.2.1.2
간단히 합니다.
단계 3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
에 곱의 미분 법칙을 적용합니다.
단계 3.3.1.2
승 합니다.
단계 3.3.1.3
을 곱합니다.
단계 4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
방정식의 양변에서 를 뺍니다.
단계 4.2
를 대입합니다.
단계 4.3
식의 좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
피타고라스의 정리를 적용합니다.
단계 4.3.2
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1
사인 배각 공식을 적용합니다.
단계 4.3.2.2
지수 법칙 을 이용하여 지수를 분배합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.2.1
에 곱의 미분 법칙을 적용합니다.
단계 4.3.2.2.2
에 곱의 미분 법칙을 적용합니다.
단계 4.3.2.3
승 합니다.
단계 4.3.2.4
을 곱합니다.
단계 4.4
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.1
에서 를 인수분해합니다.
단계 4.4.2
에서 를 인수분해합니다.
단계 4.4.3
에서 를 인수분해합니다.
단계 4.5
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 4.6
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.1
와 같다고 둡니다.
단계 4.6.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.2.1
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 4.6.2.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.2.2.1
의 정확한 값은 입니다.
단계 4.6.2.3
코사인 함수는 제1사분면과 제4사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제4사분면에 있는 해를 구합니다.
단계 4.6.2.4
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.2.4.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 4.6.2.4.2
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.2.4.2.1
을 묶습니다.
단계 4.6.2.4.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 4.6.2.4.3
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.2.4.3.1
을 곱합니다.
단계 4.6.2.4.3.2
에서 을 뺍니다.
단계 4.6.2.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.2.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 4.6.2.5.2
주기 공식에서 을 대입합니다.
단계 4.6.2.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 4.6.2.5.4
로 나눕니다.
단계 4.6.2.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 4.7
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.1
와 같다고 둡니다.
단계 4.7.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.1
항등식 를 사용하여 로 바꿉니다.
단계 4.7.2.2
을 곱합니다.
단계 4.7.2.3
분배 법칙을 적용합니다.
단계 4.7.2.4
을 곱합니다.
단계 4.7.2.5
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.5.1
를 옮깁니다.
단계 4.7.2.5.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.5.2.1
승 합니다.
단계 4.7.2.5.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 4.7.2.5.3
에 더합니다.
단계 4.7.2.6
다항식을 다시 정렬합니다.
단계 4.7.2.7
를 대입합니다.
단계 4.7.2.8
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.8.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.8.1.1
에서 를 인수분해합니다.
단계 4.7.2.8.1.2
로 바꿔 씁니다.
단계 4.7.2.8.1.3
에서 를 인수분해합니다.
단계 4.7.2.8.1.4
에서 를 인수분해합니다.
단계 4.7.2.8.2
로 바꿔 씁니다.
단계 4.7.2.8.3
인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.8.3.1
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 4.7.2.8.3.2
불필요한 괄호를 제거합니다.
단계 4.7.2.9
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 4.7.2.10
와 같다고 둡니다.
단계 4.7.2.11
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.11.1
와 같다고 둡니다.
단계 4.7.2.11.2
방정식의 양변에서 를 뺍니다.
단계 4.7.2.12
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.12.1
와 같다고 둡니다.
단계 4.7.2.12.2
방정식의 양변에 를 더합니다.
단계 4.7.2.13
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 4.7.2.14
를 대입합니다.
단계 4.7.2.15
각 식에 대하여 를 구합니다.
단계 4.7.2.16
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.16.1
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 4.7.2.16.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.16.2.1
의 정확한 값은 입니다.
단계 4.7.2.16.3
코사인 함수는 제1사분면과 제4사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제4사분면에 있는 해를 구합니다.
단계 4.7.2.16.4
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.16.4.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 4.7.2.16.4.2
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.16.4.2.1
을 묶습니다.
단계 4.7.2.16.4.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 4.7.2.16.4.3
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.16.4.3.1
을 곱합니다.
단계 4.7.2.16.4.3.2
에서 을 뺍니다.
단계 4.7.2.16.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.16.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 4.7.2.16.5.2
주기 공식에서 을 대입합니다.
단계 4.7.2.16.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 4.7.2.16.5.4
로 나눕니다.
단계 4.7.2.16.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 4.7.2.17
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.17.1
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 4.7.2.17.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.17.2.1
의 정확한 값은 입니다.
단계 4.7.2.17.3
코사인 함수는 제2사분면과 제3사분면에서 음의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제3사분면에 있는 해를 구합니다.
단계 4.7.2.17.4
에서 을 뺍니다.
단계 4.7.2.17.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.17.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 4.7.2.17.5.2
주기 공식에서 을 대입합니다.
단계 4.7.2.17.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 4.7.2.17.5.4
로 나눕니다.
단계 4.7.2.17.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 4.7.2.18
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.18.1
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 4.7.2.18.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.18.2.1
의 정확한 값은 입니다.
단계 4.7.2.18.3
코사인 함수는 제1사분면과 제4사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제4사분면에 있는 해를 구합니다.
단계 4.7.2.18.4
에서 을 뺍니다.
단계 4.7.2.18.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.7.2.18.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 4.7.2.18.5.2
주기 공식에서 을 대입합니다.
단계 4.7.2.18.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 4.7.2.18.5.4
로 나눕니다.
단계 4.7.2.18.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 4.7.2.19
모든 해를 나열합니다.
임의의 정수 에 대해
단계 4.7.2.20
답안을 하나로 합합니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 4.8
을 참으로 만드는 모든 값이 최종 해가 됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 5
답안을 하나로 합합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
, 에 통합합니다.
임의의 정수 에 대해
단계 5.2
, 에 통합합니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 6
각 해를 다시 원래 식 에 대입해 풉니다.
임의의 정수 에 대해