삼각법 예제

역함수 구하기 f(x) = square root of 4x^2+3
단계 1
을(를) 방정식으로 씁니다.
단계 2
변수를 서로 바꿉니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
로 방정식을 다시 씁니다.
단계 3.2
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 3.3
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 3.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.3.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.1.2.1
공약수로 약분합니다.
단계 3.3.2.1.1.2.2
수식을 다시 씁니다.
단계 3.3.2.1.2
간단히 합니다.
단계 3.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
방정식의 양변에서 를 뺍니다.
단계 3.4.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.2.1
의 각 항을 로 나눕니다.
단계 3.4.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.2.2.1.1
공약수로 약분합니다.
단계 3.4.2.2.1.2
로 나눕니다.
단계 3.4.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.2.3.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 3.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 3.4.4
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.4.1
공통분모를 가진 분자끼리 묶습니다.
단계 3.4.4.2
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.4.2.1
에서 완전제곱인 인수를 묶습니다.
단계 3.4.4.2.2
에서 완전제곱인 인수를 묶습니다.
단계 3.4.4.2.3
분수 를 다시 정렬합니다.
단계 3.4.4.3
근호 안의 항을 밖으로 빼냅니다.
단계 3.4.4.4
을 묶습니다.
단계 3.4.5
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.5.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 3.4.5.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 3.4.5.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 4
Replace with to show the final answer.
단계 5
증명하려면 의 역함수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
역함수의 정의역은 원래 함수의 치역이고 그 반대도 마찬가지입니다. 의 정의역과 치역을 구하여 비교합니다.
단계 5.2
의 범위를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
치역은 모든 유효한 값의 집합입니다. 그래프를 이용하여 치역을 찾습니다.
구간 표기:
단계 5.3
의 정의역을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 5.3.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1
부등식 양변에 를 더합니다.
단계 5.3.2.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
단계 5.3.2.3
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.3.1
근호 안의 항을 밖으로 빼냅니다.
단계 5.3.2.4
을(를) 구간으로 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.4.1
첫 번째 구간의 간격을 구하려면 절댓값의 내부가 음이 아닌 곳을 찾습니다.
단계 5.3.2.4.2
이(가) 음수가 아닌 부분에서 절댓값을 제거합니다.
단계 5.3.2.4.3
두 번째 구간의 간격을 구하려면 절댓값의 내부가 음인 곳을 찾습니다.
단계 5.3.2.4.4
이(가) 음수인 부분에서 절댓값을 제거하고 을(를) 곱합니다.
단계 5.3.2.4.5
구간으로 씁니다.
단계 5.3.2.5
의 교점을 구합니다.
단계 5.3.2.6
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.6.1
의 각 항을 로 나눕니다. 부등식의 양변에 음수를 곱하거나 나눌 때에는 부등호의 방향을 바꿉니다.
단계 5.3.2.6.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.6.2.1
두 음수를 나누면 양수가 나옵니다.
단계 5.3.2.6.2.2
로 나눕니다.
단계 5.3.2.6.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.6.3.1
의 분모에서 -1을 옮깁니다.
단계 5.3.2.6.3.2
로 바꿔 씁니다.
단계 5.3.2.7
해의 합집합을 구합니다.
또는
또는
단계 5.3.3
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 5.4
의 정의역이 의 치역이 아니면의 역함수가 아닙니다.
역함수가 없음
역함수가 없음
단계 6