삼각법 예제

역함수 구하기 y = square root of x-3
단계 1
변수를 서로 바꿉니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
로 방정식을 다시 씁니다.
단계 2.2
방정식의 양변에 를 더합니다.
단계 2.3
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 2.4
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2.4.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.4.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.2.1.1.2.1
공약수로 약분합니다.
단계 2.4.2.1.1.2.2
수식을 다시 씁니다.
단계 2.4.2.1.2
간단히 합니다.
단계 2.4.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.3.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.3.1.1
로 바꿔 씁니다.
단계 2.4.3.1.2
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.3.1.2.1
분배 법칙을 적용합니다.
단계 2.4.3.1.2.2
분배 법칙을 적용합니다.
단계 2.4.3.1.2.3
분배 법칙을 적용합니다.
단계 2.4.3.1.3
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.3.1.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.3.1.3.1.1
을 곱합니다.
단계 2.4.3.1.3.1.2
의 왼쪽으로 이동하기
단계 2.4.3.1.3.1.3
을 곱합니다.
단계 2.4.3.1.3.2
에 더합니다.
단계 3
을 대입하여 최종 답을 얻습니다.
단계 4
증명하려면 의 역함수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
역함수를 증명하려면 인지 확인합니다.
단계 4.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
합성함수식을 세웁니다.
단계 4.2.2
값을 에 대입하여 값을 계산합니다.
단계 4.2.3
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.3.1
로 바꿔 씁니다.
단계 4.2.3.2
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.3.2.1
분배 법칙을 적용합니다.
단계 4.2.3.2.2
분배 법칙을 적용합니다.
단계 4.2.3.2.3
분배 법칙을 적용합니다.
단계 4.2.3.3
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.3.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.3.3.1.1
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.3.3.1.1.1
승 합니다.
단계 4.2.3.3.1.1.2
승 합니다.
단계 4.2.3.3.1.1.3
지수 법칙 을 이용하여 지수를 합칩니다.
단계 4.2.3.3.1.1.4
에 더합니다.
단계 4.2.3.3.1.2
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.3.3.1.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 4.2.3.3.1.2.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 4.2.3.3.1.2.3
을 묶습니다.
단계 4.2.3.3.1.2.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.3.3.1.2.4.1
공약수로 약분합니다.
단계 4.2.3.3.1.2.4.2
수식을 다시 씁니다.
단계 4.2.3.3.1.2.5
간단히 합니다.
단계 4.2.3.3.1.3
의 왼쪽으로 이동하기
단계 4.2.3.3.1.4
을 곱합니다.
단계 4.2.3.3.2
에서 을 뺍니다.
단계 4.2.3.4
분배 법칙을 적용합니다.
단계 4.2.3.5
을 곱합니다.
단계 4.2.4
항을 더해 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.4.1
의 반대 항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.4.1.1
에 더합니다.
단계 4.2.4.1.2
에 더합니다.
단계 4.2.4.2
에서 을 뺍니다.
단계 4.2.4.3
의 반대 항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.4.3.1
에 더합니다.
단계 4.2.4.3.2
에 더합니다.
단계 4.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
합성함수식을 세웁니다.
단계 4.3.2
값을 에 대입하여 값을 계산합니다.
단계 4.3.3
괄호를 제거합니다.
단계 4.3.4
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.4.1
완전제곱 법칙을 이용하여 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.4.1.1
로 바꿔 씁니다.
단계 4.3.4.1.2
중간 항이 첫 번째 항 및 세 번째 항에서 제곱되는 수를 곱한 값의 두 배인지 확인합니다.
단계 4.3.4.1.3
다항식을 다시 씁니다.
단계 4.3.4.1.4
이고 일 때 완전제곱 삼항식 법칙 을 이용하여 인수분해합니다.
단계 4.3.4.2
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 4.3.5
의 반대 항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.5.1
에서 을 뺍니다.
단계 4.3.5.2
에 더합니다.
단계 4.4
이므로, 의 역함수입니다.