삼각법 예제

역함수 구하기 y=arcsin(5-3x^2)
단계 1
변수를 서로 바꿉니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
로 방정식을 다시 씁니다.
단계 2.2
역사인 안의 를 꺼내기 위해 방정식 양변에 역사인의 역을 취합니다.
단계 2.3
방정식의 양변에서 를 뺍니다.
단계 2.4
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
의 각 항을 로 나눕니다.
단계 2.4.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.2.1.1
공약수로 약분합니다.
단계 2.4.2.1.2
로 나눕니다.
단계 2.4.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.3.1.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 2.4.3.1.2
두 음수를 나누면 양수가 나옵니다.
단계 2.5
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 2.6
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 2.6.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 2.6.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 3
을 대입하여 최종 답을 얻습니다.
단계 4
증명하려면 의 역함수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
역함수의 정의역은 원래 함수의 치역이고 그 반대도 마찬가지입니다. 의 정의역과 치역을 구하여 비교합니다.
단계 4.2
의 범위를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
치역은 모든 유효한 값의 집합입니다. 그래프를 이용하여 치역을 찾습니다.
구간 표기:
단계 4.3
의 정의역을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 4.3.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1
부등식의 양변에서 를 뺍니다.
단계 4.3.2.2
방정식의 각 변에 있는 식이 같은 분모를 가지므로 분자가 같아야 합니다.
단계 4.3.2.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.3.1
의 각 항을 로 나눕니다. 부등식의 양변에 음수를 곱하거나 나눌 때에는 부등호의 방향을 바꿉니다.
단계 4.3.2.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.3.2.1
두 음수를 나누면 양수가 나옵니다.
단계 4.3.2.3.2.2
로 나눕니다.
단계 4.3.2.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.3.3.1
로 나눕니다.
단계 4.3.2.4
사인의 범위는 입니다. 가 이 영역에 속하지 않으므로 해는 존재하지 않습니다.
해 없음
해 없음
단계 4.3.3
정의역은 모든 실수입니다.
단계 4.4
의 정의역이 의 치역이 아니면의 역함수가 아닙니다.
역함수가 없음
역함수가 없음
단계 5