삼각법 예제

Résoudre pour x 4/(3x)+7/x<5/9
단계 1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.2
각 수식에 적절한 인수 을 곱하여 수식의 분모가 모두 이 되도록 식을 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
을 곱합니다.
단계 1.2.2
인수를 다시 정렬합니다.
단계 1.3
공통분모를 가진 분자끼리 묶습니다.
단계 1.4
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
을 곱합니다.
단계 1.4.2
에 더합니다.
단계 2
양변에 을 곱합니다.
단계 3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 3.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1.2.1
에서 를 인수분해합니다.
단계 3.1.1.2.2
공약수로 약분합니다.
단계 3.1.1.2.3
수식을 다시 씁니다.
단계 3.1.1.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1.3.1
공약수로 약분합니다.
단계 3.1.1.3.2
수식을 다시 씁니다.
단계 3.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1.1
에서 를 인수분해합니다.
단계 3.2.1.1.2
에서 를 인수분해합니다.
단계 3.2.1.1.3
공약수로 약분합니다.
단계 3.2.1.1.4
수식을 다시 씁니다.
단계 3.2.1.2
을 묶습니다.
단계 4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
로 방정식을 다시 씁니다.
단계 4.2
방정식의 양변에 을 곱합니다.
단계 4.3
방정식의 양변을 간단히 정리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1.1.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1.1.1.1
공약수로 약분합니다.
단계 4.3.1.1.1.2
수식을 다시 씁니다.
단계 4.3.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1.1.2.1
에서 를 인수분해합니다.
단계 4.3.1.1.2.2
공약수로 약분합니다.
단계 4.3.1.1.2.3
수식을 다시 씁니다.
단계 4.3.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1.1.1
에서 를 인수분해합니다.
단계 4.3.2.1.1.2
공약수로 약분합니다.
단계 4.3.2.1.1.3
수식을 다시 씁니다.
단계 4.3.2.1.2
을 곱합니다.
단계 5
의 정의역을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 5.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
의 각 항을 로 나눕니다.
단계 5.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.2.1.1
공약수로 약분합니다.
단계 5.2.2.1.2
로 나눕니다.
단계 5.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.3.1
로 나눕니다.
단계 5.3
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 6
각 근을 사용하여 시험 구간을 만듭니다.
단계 7
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 7.1.2
원래 부등식에서 로 치환합니다.
단계 7.1.3
좌변 이 우변 보다 작으므로 주어진 명제는 항상 참입니다.
True
True
단계 7.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 7.2.2
원래 부등식에서 로 치환합니다.
단계 7.2.3
좌변 이 우변 보다 작지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 7.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 7.3.2
원래 부등식에서 로 치환합니다.
단계 7.3.3
좌변 이 우변 보다 작으므로 주어진 명제는 항상 참입니다.
True
True
단계 7.4
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
단계 8
해는 모두 참인 구간으로 이루어져 있습니다.
또는
단계 9
결과값은 다양한 형태로 나타낼 수 있습니다.
부등식 형식:
구간 표기:
단계 10