삼각법 예제

Résoudre pour x (( pi)/6)^2+sin(x)=1 의 제곱근
단계 1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
에 곱의 미분 법칙을 적용합니다.
단계 1.2
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 1.2.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 1.2.3
을 묶습니다.
단계 1.2.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.4.1
공약수로 약분합니다.
단계 1.2.4.2
수식을 다시 씁니다.
단계 1.2.5
간단히 합니다.
단계 1.3
승 합니다.
단계 2
방정식의 양변에서 를 뺍니다.
단계 3
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 4
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
의 값을 구합니다.
단계 5
사인 함수는 제1사분면과 제2사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제2사분면에 속한 해를 구합니다.
단계 6
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
괄호를 제거합니다.
단계 6.2
괄호를 제거합니다.
단계 6.3
에서 을 뺍니다.
단계 7
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 7.2
주기 공식에서 을 대입합니다.
단계 7.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 7.4
로 나눕니다.
단계 8
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해