삼각법 예제

인수분해하기 f(x)=2x^4-19x^3+33x^2+59x-60
단계 1
유리근 정리르 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
다항함수의 계수가 정수인 경우, 가 상수의 약수이며 가 최고차항 계수의 인수일 때 모든 유리근은 의 형태를 가집니다.
단계 1.2
의 모든 조합을 찾습니다. 이들은 다항 함수의 해가 될 수 있습니다.
단계 1.3
을 대입하고 식을 간단히 합니다. 이 경우 식이 이므로 은 다항식의 근입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
을 다항식에 대입합니다.
단계 1.3.2
승 합니다.
단계 1.3.3
을 곱합니다.
단계 1.3.4
승 합니다.
단계 1.3.5
을 곱합니다.
단계 1.3.6
에 더합니다.
단계 1.3.7
승 합니다.
단계 1.3.8
을 곱합니다.
단계 1.3.9
에 더합니다.
단계 1.3.10
을 곱합니다.
단계 1.3.11
에서 을 뺍니다.
단계 1.3.12
에서 을 뺍니다.
단계 1.4
는 알고 있는 해이므로 다항식을 으로 나누어 몫 다항식을 구합니다. 이 다항식은 나머지 해를 찾기 위해 이용됩니다.
단계 1.5
로 나눕니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
다항식을 나눗셈 형태로 적습니다. 각 지수에 대하여 항이 없는 경우 값이 인 항을 삽입합니다.
+-++-
단계 1.5.2
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
+-++-
단계 1.5.3
새로운 몫 값에 제수를 곱합니다.
+-++-
++
단계 1.5.4
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
+-++-
--
단계 1.5.5
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
+-++-
--
-
단계 1.5.6
원래 피제수의 다음 항을 아래로 내려 현재 피제수로 보냅니다.
+-++-
--
-+
단계 1.5.7
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
-
+-++-
--
-+
단계 1.5.8
새로운 몫 값에 제수를 곱합니다.
-
+-++-
--
-+
--
단계 1.5.9
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
-
+-++-
--
-+
++
단계 1.5.10
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
-
+-++-
--
-+
++
+
단계 1.5.11
원래 피제수의 다음 항을 아래로 내려 현재 피제수로 보냅니다.
-
+-++-
--
-+
++
++
단계 1.5.12
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
-+
+-++-
--
-+
++
++
단계 1.5.13
새로운 몫 값에 제수를 곱합니다.
-+
+-++-
--
-+
++
++
++
단계 1.5.14
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
-+
+-++-
--
-+
++
++
--
단계 1.5.15
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
-+
+-++-
--
-+
++
++
--
-
단계 1.5.16
원래 피제수의 다음 항을 아래로 내려 현재 피제수로 보냅니다.
-+
+-++-
--
-+
++
++
--
--
단계 1.5.17
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
-+-
+-++-
--
-+
++
++
--
--
단계 1.5.18
새로운 몫 값에 제수를 곱합니다.
-+-
+-++-
--
-+
++
++
--
--
--
단계 1.5.19
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
-+-
+-++-
--
-+
++
++
--
--
++
단계 1.5.20
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
-+-
+-++-
--
-+
++
++
--
--
++
단계 1.5.21
나머지가 이므로, 몫이 최종해입니다.
단계 1.6
을 인수의 집합으로 표현합니다.
단계 2
유리근 정리르 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
유리근 정리르 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
다항함수의 계수가 정수인 경우, 가 상수의 약수이며 가 최고차항 계수의 인수일 때 모든 유리근은 의 형태를 가집니다.
단계 2.1.2
의 모든 조합을 찾습니다. 이들은 다항 함수의 해가 될 수 있습니다.
단계 2.1.3
을 대입하고 식을 간단히 합니다. 이 경우 식이 이므로 은 다항식의 근입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.3.1
을 다항식에 대입합니다.
단계 2.1.3.2
승 합니다.
단계 2.1.3.3
승 합니다.
단계 2.1.3.4
을 곱합니다.
단계 2.1.3.5
에서 을 뺍니다.
단계 2.1.3.6
을 곱합니다.
단계 2.1.3.7
에 더합니다.
단계 2.1.3.8
에서 을 뺍니다.
단계 2.1.4
는 알고 있는 해이므로 다항식을 으로 나누어 몫 다항식을 구합니다. 이 다항식은 나머지 해를 찾기 위해 이용됩니다.
단계 2.1.5
로 나눕니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.5.1
다항식을 나눗셈 형태로 적습니다. 각 지수에 대하여 항이 없는 경우 값이 인 항을 삽입합니다.
--+-
단계 2.1.5.2
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
--+-
단계 2.1.5.3
새로운 몫 값에 제수를 곱합니다.
--+-
+-
단계 2.1.5.4
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
--+-
-+
단계 2.1.5.5
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
--+-
-+
-
단계 2.1.5.6
원래 피제수의 다음 항을 아래로 내려 현재 피제수로 보냅니다.
--+-
-+
-+
단계 2.1.5.7
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
-
--+-
-+
-+
단계 2.1.5.8
새로운 몫 값에 제수를 곱합니다.
-
--+-
-+
-+
-+
단계 2.1.5.9
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
-
--+-
-+
-+
+-
단계 2.1.5.10
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
-
--+-
-+
-+
+-
+
단계 2.1.5.11
원래 피제수의 다음 항을 아래로 내려 현재 피제수로 보냅니다.
-
--+-
-+
-+
+-
+-
단계 2.1.5.12
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
-+
--+-
-+
-+
+-
+-
단계 2.1.5.13
새로운 몫 값에 제수를 곱합니다.
-+
--+-
-+
-+
+-
+-
+-
단계 2.1.5.14
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
-+
--+-
-+
-+
+-
+-
-+
단계 2.1.5.15
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
-+
--+-
-+
-+
+-
+-
-+
단계 2.1.5.16
나머지가 이므로, 몫이 최종해입니다.
단계 2.1.6
을 인수의 집합으로 표현합니다.
단계 2.2
불필요한 괄호를 제거합니다.