삼각법 예제

그래프 y=sin(1.5x)
단계 1
형태를 이용해 진폭, 주기, 위상 이동, 수직 이동을 구하는 데 사용되는 변수들을 찾습니다.
단계 2
진폭 을 구합니다.
진폭:
단계 3
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 3.2
주기 공식에서 을 대입합니다.
단계 3.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 3.4
를 근사치로 바꿉니다.
단계 3.5
을 곱합니다.
단계 3.6
로 나눕니다.
단계 4
공식을 이용하여 위상차를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
함수의 위상 이동은 를 이용하여 구할 수 있습니다.
위상 변이:
단계 4.2
의 값을 위상 변이 방정식에 대입합니다.
위상 변이:
단계 4.3
로 나눕니다.
위상 변이:
위상 변이:
단계 5
삼각함수의 성질을 나열합니다.
진폭:
주기:
위상 이동: 없음
수직 이동: 없음
단계 6
여러 개의 점을 선택하여 그래프를 그립니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1
수식에서 변수 을 대입합니다.
단계 6.1.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.2.1
을 곱합니다.
단계 6.1.2.2
의 정확한 값은 입니다.
단계 6.1.2.3
최종 답은 입니다.
단계 6.2
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
수식에서 변수 을 대입합니다.
단계 6.2.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1
을 곱합니다.
단계 6.2.2.2
최종 답은 입니다.
단계 6.2.3
를 소수로 변환합니다.
단계 6.3
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1
수식에서 변수 을 대입합니다.
단계 6.3.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.2.1
을 곱합니다.
단계 6.3.2.2
최종 답은 입니다.
단계 6.3.3
를 소수로 변환합니다.
단계 6.4
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.4.1
수식에서 변수 을 대입합니다.
단계 6.4.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.4.2.1
을 곱합니다.
단계 6.4.2.2
최종 답은 입니다.
단계 6.4.3
를 소수로 변환합니다.
단계 6.5
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.5.1
수식에서 변수 을 대입합니다.
단계 6.5.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.5.2.1
을 곱합니다.
단계 6.5.2.2
최종 답은 입니다.
단계 6.5.3
를 소수로 변환합니다.
단계 6.6
표에 점을 적습니다.
단계 7
삼각함수의 그래프는 진폭, 주기, 위상 변화, 수직 이동, 점들을 이용하여 그릴 수 있습니다.
진폭:
주기:
위상 이동: 없음
수직 이동: 없음
단계 8