문제를 입력하십시오...
삼각법 예제
, ,
단계 1
삼각형에서 모든 각의 합은 도입니다.
단계 2
단계 2.1
를 에 더합니다.
단계 2.2
를 포함하지 않은 모든 항을 방정식의 우변으로 옮깁니다.
단계 2.2.1
방정식의 양변에서 를 뺍니다.
단계 2.2.2
에서 을 뺍니다.
단계 3
사인 법칙은 삼각형의 변과 각이 비례함을 바탕으로 합니다. 이 법칙에 따르면 직각이 아닌 삼각형에서 삼각형의 변의 비는 각의 사인값의 비와 같습니다.
단계 4
을 알아내기 위해 알고 있는 값을 사인 법칙에 대입합니다.
단계 5
단계 5.1
각 항을 인수분해합니다.
단계 5.1.1
의 값을 구합니다.
단계 5.1.2
의 값을 구합니다.
단계 5.1.3
을 로 나눕니다.
단계 5.2
방정식 항의 최소공분모를 구합니다.
단계 5.2.1
여러 값의 최소공분모를 구하는 것은 해당 값들의 분모의 최소공배수를 구하는 것과 같습니다.
단계 5.2.2
1과 식의 최소공배수는 그 식 자체입니다.
단계 5.3
의 각 항에 을 곱하고 분수를 소거합니다.
단계 5.3.1
의 각 항에 을 곱합니다.
단계 5.3.2
좌변을 간단히 합니다.
단계 5.3.2.1
의 공약수로 약분합니다.
단계 5.3.2.1.1
공약수로 약분합니다.
단계 5.3.2.1.2
수식을 다시 씁니다.
단계 5.4
식을 풉니다.
단계 5.4.1
로 방정식을 다시 씁니다.
단계 5.4.2
의 각 항을 로 나누고 식을 간단히 합니다.
단계 5.4.2.1
의 각 항을 로 나눕니다.
단계 5.4.2.2
좌변을 간단히 합니다.
단계 5.4.2.2.1
의 공약수로 약분합니다.
단계 5.4.2.2.1.1
공약수로 약분합니다.
단계 5.4.2.2.1.2
을 로 나눕니다.
단계 5.4.2.3
우변을 간단히 합니다.
단계 5.4.2.3.1
을 로 나눕니다.
단계 6
사인 법칙은 삼각형의 변과 각이 비례함을 바탕으로 합니다. 이 법칙에 따르면 직각이 아닌 삼각형에서 삼각형의 변의 비는 각의 사인값의 비와 같습니다.
단계 7
을 알아내기 위해 알고 있는 값을 사인 법칙에 대입합니다.
단계 8
단계 8.1
각 항을 인수분해합니다.
단계 8.1.1
의 값을 구합니다.
단계 8.1.2
의 값을 구합니다.
단계 8.1.3
을 로 나눕니다.
단계 8.2
방정식 항의 최소공분모를 구합니다.
단계 8.2.1
여러 값의 최소공분모를 구하는 것은 해당 값들의 분모의 최소공배수를 구하는 것과 같습니다.
단계 8.2.2
1과 식의 최소공배수는 그 식 자체입니다.
단계 8.3
의 각 항에 을 곱하고 분수를 소거합니다.
단계 8.3.1
의 각 항에 을 곱합니다.
단계 8.3.2
좌변을 간단히 합니다.
단계 8.3.2.1
의 공약수로 약분합니다.
단계 8.3.2.1.1
공약수로 약분합니다.
단계 8.3.2.1.2
수식을 다시 씁니다.
단계 8.4
식을 풉니다.
단계 8.4.1
로 방정식을 다시 씁니다.
단계 8.4.2
의 각 항을 로 나누고 식을 간단히 합니다.
단계 8.4.2.1
의 각 항을 로 나눕니다.
단계 8.4.2.2
좌변을 간단히 합니다.
단계 8.4.2.2.1
의 공약수로 약분합니다.
단계 8.4.2.2.1.1
공약수로 약분합니다.
단계 8.4.2.2.1.2
을 로 나눕니다.
단계 8.4.2.3
우변을 간단히 합니다.
단계 8.4.2.3.1
을 로 나눕니다.
단계 9
주어진 삼각형의 모든 각과 변에 대한 결과는 다음과 같습니다.