삼각법 예제

정의역 및 치역 구하기 f(x)=tan(2x)^(1/2)
단계 1
분수 지수가 있는 식을 근호로 변환합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
규칙 을 적용하여 지수 형태를 근호로 다시 씁니다.
단계 1.2
모든 수의 승은 밑 자체입니다.
단계 2
식이 정의된 지점을 알아내려면 의 피개법수를 보다 크거나 같게 설정해야 합니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
탄젠트 안의 를 꺼내기 위해 방정식 양변에 탄젠트의 역을 취합니다.
단계 3.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
의 정확한 값은 입니다.
단계 3.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
의 각 항을 로 나눕니다.
단계 3.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.1
공약수로 약분합니다.
단계 3.3.2.1.2
로 나눕니다.
단계 3.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.3.1
로 나눕니다.
단계 3.4
탄젠트 함수는 제1사분면과 제3사분면에서 양의 값을 가집니다. 두번째 해를 구하려면 에 기준각을 더하여 제4사분면에 있는 해를 구합니다.
단계 3.5
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.1
에 더합니다.
단계 3.5.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.2.1
의 각 항을 로 나눕니다.
단계 3.5.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.2.2.1.1
공약수로 약분합니다.
단계 3.5.2.2.1.2
로 나눕니다.
단계 3.6
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.6.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 3.6.2
주기 공식에서 을 대입합니다.
단계 3.6.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 3.7
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
단계 3.8
답안을 하나로 합합니다.
임의의 정수 에 대해
단계 3.9
의 정의역을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.9.1
식이 정의되지 않은 지점을 알아내려면 의 진수를 과 같게 설정해야 합니다.
임의의 정수 에 대해
단계 3.9.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.9.2.1
의 각 항을 로 나눕니다.
단계 3.9.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.9.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.9.2.2.1.1
공약수로 약분합니다.
단계 3.9.2.2.1.2
로 나눕니다.
단계 3.9.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.9.2.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.9.2.3.1.1
분자에 분모의 역수를 곱합니다.
단계 3.9.2.3.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.9.2.3.1.2.1
을 곱합니다.
단계 3.9.2.3.1.2.2
을 곱합니다.
단계 3.9.3
정의역은 수식을 정의하는 모든 유효한 값입니다.
임의의 정수 에 대한
임의의 정수 에 대한
단계 3.10
각 근을 사용하여 시험 구간을 만듭니다.
단계 3.11
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.11.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.11.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 3.11.1.2
원래 부등식에서 로 치환합니다.
단계 3.11.1.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
단계 3.11.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.11.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 3.11.2.2
원래 부등식에서 로 치환합니다.
단계 3.11.2.3
좌변 이 우변 보다 작으므로 주어진 명제는 거짓입니다.
거짓
거짓
단계 3.11.3
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
단계 3.12
해는 모두 참인 구간으로 이루어져 있습니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 4
식이 정의되지 않은 지점을 알아내려면 의 진수를 과 같게 설정해야 합니다.
임의의 정수 에 대해
단계 5
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
의 각 항을 로 나눕니다.
단계 5.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1.1
공약수로 약분합니다.
단계 5.2.1.2
로 나눕니다.
단계 5.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.1
분자에 분모의 역수를 곱합니다.
단계 5.3.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.2.1
을 곱합니다.
단계 5.3.1.2.2
을 곱합니다.
단계 6
정의역은 수식을 정의하는 모든 유효한 값입니다.
조건제시법:
단계 7
정의역과 치역을 구합니다.
정의역:
치역:
단계 8