문제를 입력하십시오...
삼각법 예제
단계 1
방정식의 양변에서 를 뺍니다.
단계 2
단계 2.1
에서 를 인수분해합니다.
단계 2.1.1
에서 를 인수분해합니다.
단계 2.1.2
에서 를 인수분해합니다.
단계 2.1.3
에서 를 인수분해합니다.
단계 2.2
을 로 바꿔 씁니다.
단계 3
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 4
단계 4.1
를 와 같다고 둡니다.
단계 4.2
을 에 대해 풉니다.
단계 4.2.1
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 4.2.2
우변을 간단히 합니다.
단계 4.2.2.1
의 정확한 값은 입니다.
단계 4.2.3
코사인 함수는 제1사분면과 제4사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제4사분면에 있는 해를 구합니다.
단계 4.2.4
을 간단히 합니다.
단계 4.2.4.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 4.2.4.2
분수를 통분합니다.
단계 4.2.4.2.1
와 을 묶습니다.
단계 4.2.4.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 4.2.4.3
분자를 간단히 합니다.
단계 4.2.4.3.1
에 을 곱합니다.
단계 4.2.4.3.2
에서 을 뺍니다.
단계 4.2.5
주기를 구합니다.
단계 4.2.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 4.2.5.2
주기 공식에서 에 을 대입합니다.
단계 4.2.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 4.2.5.4
을 로 나눕니다.
단계 4.2.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 5
단계 5.1
를 와 같다고 둡니다.
단계 5.2
을 에 대해 풉니다.
단계 5.2.1
방정식의 각 항을 로 나눕니다.
단계 5.2.2
의 공약수로 약분합니다.
단계 5.2.2.1
공약수로 약분합니다.
단계 5.2.2.2
수식을 다시 씁니다.
단계 5.2.3
분수를 나눕니다.
단계 5.2.4
을 로 변환합니다.
단계 5.2.5
을 로 나눕니다.
단계 5.2.6
분수를 나눕니다.
단계 5.2.7
을 로 변환합니다.
단계 5.2.8
을 로 나눕니다.
단계 5.2.9
에 을 곱합니다.
단계 5.2.10
방정식의 양변에서 를 뺍니다.
단계 5.2.11
의 각 항을 로 나누고 식을 간단히 합니다.
단계 5.2.11.1
의 각 항을 로 나눕니다.
단계 5.2.11.2
좌변을 간단히 합니다.
단계 5.2.11.2.1
두 음수를 나누면 양수가 나옵니다.
단계 5.2.11.2.2
을 로 나눕니다.
단계 5.2.11.3
우변을 간단히 합니다.
단계 5.2.11.3.1
을 로 나눕니다.
단계 5.2.12
탄젠트 안의 를 꺼내기 위해 방정식 양변에 탄젠트의 역을 취합니다.
단계 5.2.13
우변을 간단히 합니다.
단계 5.2.13.1
의 정확한 값은 입니다.
단계 5.2.14
탄젠트 함수는 제1사분면과 제3사분면에서 양의 값을 가집니다. 두번째 해를 구하려면 에 기준각을 더하여 제4사분면에 있는 해를 구합니다.
단계 5.2.15
을 간단히 합니다.
단계 5.2.15.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 5.2.15.2
분수를 통분합니다.
단계 5.2.15.2.1
와 을 묶습니다.
단계 5.2.15.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 5.2.15.3
분자를 간단히 합니다.
단계 5.2.15.3.1
의 왼쪽으로 이동하기
단계 5.2.15.3.2
를 에 더합니다.
단계 5.2.16
주기를 구합니다.
단계 5.2.16.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 5.2.16.2
주기 공식에서 에 을 대입합니다.
단계 5.2.16.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 5.2.16.4
을 로 나눕니다.
단계 5.2.17
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 6
을 참으로 만드는 모든 값이 최종 해가 됩니다.
임의의 정수 에 대해
단계 7
단계 7.1
, 를 에 통합합니다.
임의의 정수 에 대해
단계 7.2
, 를 에 통합합니다.
임의의 정수 에 대해
임의의 정수 에 대해