삼각법 예제

간단히 정리하기 csc(x)(1-(cos(x))/(sec(x)))
csc(x)(1-cos(x)sec(x))csc(x)(1cos(x)sec(x))
단계 1
csc(x)csc(x)를 사인과 코사인을 사용하여 다시 표현합니다.
1sin(x)(1-cos(x)sec(x))1sin(x)(1cos(x)sec(x))
단계 2
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
sec(x)sec(x)를 사인과 코사인을 사용하여 다시 표현합니다.
1sin(x)(1-cos(x)1cos(x))1sin(x)1cos(x)1cos(x)
단계 2.2
1cos(x)1cos(x)로 나누기 위해 분수의 역수를 곱합니다.
1sin(x)(1-(cos(x)cos(x)))1sin(x)(1(cos(x)cos(x)))
단계 2.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
cos(x)cos(x)11승 합니다.
1sin(x)(1-(cos1(x)cos(x)))1sin(x)(1(cos1(x)cos(x)))
단계 2.3.2
cos(x)cos(x)11승 합니다.
1sin(x)(1-(cos1(x)cos1(x)))1sin(x)(1(cos1(x)cos1(x)))
단계 2.3.3
지수 법칙 aman=am+naman=am+n 을 이용하여 지수를 합칩니다.
1sin(x)(1-cos(x)1+1)1sin(x)(1cos(x)1+1)
단계 2.3.4
1111에 더합니다.
1sin(x)(1-cos2(x))1sin(x)(1cos2(x))
1sin(x)(1-cos2(x))1sin(x)(1cos2(x))
1sin(x)(1-cos2(x))1sin(x)(1cos2(x))
단계 3
피타고라스의 정리를 적용합니다.
1sin(x)sin2(x)1sin(x)sin2(x)
단계 4
sin(x)sin(x)의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
sin2(x)sin2(x)에서 sin(x)sin(x)를 인수분해합니다.
1sin(x)(sin(x)sin(x))1sin(x)(sin(x)sin(x))
단계 4.2
공약수로 약분합니다.
1sin(x)(sin(x)sin(x))
단계 4.3
수식을 다시 씁니다.
sin(x)
sin(x)
 [x2  12  π  xdx ]